
1

2006/5/23 TOPPERS Project certified 1

ＴＯＰＰＥＲＳ
Introductory implementation seminar
(JSP-1.4|AKI-H8/3069F | instant noodle timer session)

DAY 1

TOPPERS Project
Educational Working Group

2

2006/5/23 TOPPERS Project certified 2

About this document
 Document Usage Conditions

Copyrights

For opinions, proposals, and questions concerning this document, send it by e-mail to the TOPPERS Project secretariat.

This document is subject to change, for content improvement and otherwise, without prior notification.

１．

２．

３．

This document uses the Clip Art Gallery by Microsoft.

TRON is the abbreviation of ”The Real-time Operating system Nucleus”. ITRON is the abbreviation of ”Industrial TRON”. μITRON is
the abbreviation of ”Micro Industrial TRON”. TOPPERS/JSP is the abbreviation of Toyohashi Open Platform Real-Time System/ Just
Standard Profile Kernel.

All merchandise names and trade names are trademarks and registered trademarks of the companies referred.

--

<TOPPERS Introductory implementation seminar (JSP1.4|AKI-H8/3069F|timer session) DAY 1>

Copyright (C) 2004 by Ryosuke Takeuchi Ricoh Company, Ltd., Platform Development Center
Copyright (C) 2004 by Masaki Yamamoto Denso Create Inc.
Copyright (C) 2004 by Industrial Technology Institute, Miyagi Prefectural Government
Copyright (C) 2005 by Monami Software, LP

For usage of this document, when the following requirements (1)～(3) are fulfilled, usage, reproduction, changes, and redistribution
(hereafter called distribution) of this document (including changes made to the document) is granted.

(1) When distributing this document and aforementioned copyright and conditions are included in the material unchanged.
(2) When altering this document, description of the alteration must be included in the material. However, if the alteration is part

of the TOPPERS Project activity, it is not necessary to note the alteration in the material.
(3) The aforementioned authors and TOPPERS Project are to be exempt from any liability, real or imagined, direct or indirect,

that may occur from distribution of the material.
--

3

2006/5/23 TOPPERS Project certified 3

Seminar Goal

 Acquire implementing technique of RTOS (Real-
Time Operating System) by applying application
programs to TOPPERS/JSP kernel.

 Increase understanding of basic hardware interface
through on hand training.

 By reviewing the SESSAME embedded software
programmer educational seminar, broaden
knowledge of analyzing, planning, and
implementing processes.

The computer board used for implementing the application is equipped with Renesas Technology
Corp. CPU H8/3069F. Compile and link can be done on the Cygwin development tool. First,
familiarize yourself to this environment for developing. Confirm action by downloading created
execution file to target board RAM. For porting application to TOPPERS/JSP kernel, learn the
TOPPERS/JSP kernel’s construction method on the development tool by referencing the sample
program. Later, expand the sample program to create the desired system. The RTOS (Real Time
Operating System) functions used for expansion are task create and start, task communication
using shared memory, and task communication utilizing eventflags.
The hardware interface is controlled by a device interface contained in the source file named
device.c. There is no need to comprehend the contents entirely, but direct access to the hardware
port is included in this file. This driver description is written accordingly to the ITRON device
driver design guideline.
In the SESSAME introductory embedded software seminar, utilizing structure designing,

requirement analysis, designing, implementation, and testing was studied through the
development process. Let us revise this process using the study material.

4

2006/5/23 TOPPERS Project certified 4

Seminar Schedule
 Day 1  Day2
１．Checking the development tool

0.5 hr

２．What is embedded?
Revising the introductory
SESSAM seminar 1.5 hrs

３．Confirming operation of non-OS
teaching material 1 hr

４．What is a Real-Time OS? 1.5 hrs
RTOS conditional transfer,
confirmation by utilizing HW I/F
education material

５．Construction of instant noodle timer

Constructing the timer 1.5 hrs

１．Implementing the instant noodle timer

Implementing the timer 1.5 hrs

２．Review 0.5 hr
Evaluation of construction and
application

３．Synchronization and communication
1 hr

Correspondence between tasks

Synchronizing and exclusive control

４．Reconstruction using eventflags
1.5 hrs

５．Summary 1 hr

5

2006/5/23 TOPPERS Project certified 5

Checking the development toolChecking the development tool

１．Checking the development tool
２．Embedded? Revising the SESSAME introductory

seminar
３．Confirming operation of non-OS teaching material
４．What is a Real-Time OS?
５．Constructing an instant noodle timer

Let us learn about the AKI-H8/3069F development tool. Check the material provided and the four
tools of the development tool, understand the TOPPERS development tool, see if the source can
be referred by the editor, and if building is possible using the development tool.

6

2006/5/23 TOPPERS Project certified 6

Checking your training environment
Checking materials to be used

 Computer
 AKI-H8/3069F Set
・microcomputer board and
mother board (ready made)
・textbooks(4), notes (2)
・CD-ROM (1)
・power cable

 RS232C cable

RS232C cable
Windows PC

Microcomputer
board

I/O board

notes
Power
cable

AKI-H8/3069F flash
microcomputer LAN board
(MITSUWA board)text

・Computer the following tools are needed
Cygwin
Editor
communication software

・microcomputer board AKI-H8/3069F and I/O board
ready built

・RS232C cable communication link between computer and board
use for display to monitor and user program download

・text seminar textbook and μITRON4.0 specification booklet
・power cable provide power to boards
・CD-ROM explanatory note of boards and development tool included

7

2006/5/23 TOPPERS Project certified 7

Checking the development tool
Checking the Windows development tool
 Cygwin, TeraTerm icons are on the desktop
 GNU development tool, h8write are executed from the command line

Write simplified monitor to Flash ROMh8write

Cross development tool BINUTILS,GCC
（C compiler, Assembler, Linker）

GNU development
tool

Terminal software
(connects board and computer)

TeraTerm

Simplified monitor

Cygwin

Download program to RAM

Emulates a Linux-like environment on Windows

The development tool is composed from five tools.

• Cygwin emulates a Linux-like environment on Windows.
• GNU development tool consists C-complier, Assembler, and Linker.
• h8write is used when writing simplified monitor to Flash ROM. It is used from Cygwin command
line. Cygwin, GNU development tool, and h8write are included in the CD-ROM attached to the
board.
• TeraTerm is a terminal software used to connect board and computer.
• Simplified monitor is used when downloading user program to the target.

8

2006/5/23 TOPPERS Project certified 8

Explanation of the development tool
Constructing the development tool

 Development tools can be installed to your
own computer

GNU development tool can be found on the
CD-ROM attached to AKI-H8/3069F. Using
this, build the sample program.

 For reference to specific use of the tool see
attached material.

 A sample program for use in this seminar is
included in the CD-R.

Setting up AKI-H8/3069F development tool

1. Construction of development tool
Install Cygwin from the attached CD-ROM
（H8 cross-compiler will be installed as well）

Under a work directory of your choosing, create a source archive of the training material.
tar zxvf toppers-beginner-h8-2005-03-22.tar.gz

Under the toppers-beginner-h8 directory, execute “make” command.
This will create the following:
・configurator
・kernel library

（this may take some time）

At the end of the training session, to delete unnecessary files, execute
“make realclean” command under toppers-beginner-h8 directory.

2. Build user application
・Non-OS kitchen timer

Under non_os directory, execute “make” command

non_os.srec file will be created; download this to target

・RTOS kitchen timer
Under directories timer1, timer2, timer3, execute “make depend”
and “make” commands.

jsp.srec file will be created; download this to target

9

2006/5/23 TOPPERS Project certified 9

Confirming development directories
Development programs and set-up directories

 Confirm development directories
through Windows explorer

 Start up Cygwin and access
source code within the non_os
directory

 Check so programs can be built
 Check that the editor is in

working condition

Confirm source code tree within you computer.

Directory composition of the source code tree

toppers-beginner-h8
Makefile environment construction Makefile
monitor simplified monitor
jsp same as jsp1.4 distributed package
kernel_lib compiled kernel; contains library “libkernel.a”
device device driver

access routine to the on-board device
readme.txt：simple manual for the device driver

application application used for this training seminar
non_os kitchen timer not using an OS
timer1 model kitchen timer（used for conparison only）
timer2 model kitchen timer（used for reconstruction during session）
timer3 furnished kitchen timer example（solution）
eventflag furnished kitchen timer example using an event flag

10

2006/5/23 TOPPERS Project certified 10

Construction of hardware for the
microcomputer board

 For details, see appendix at end
 Hardware dependence is concealed by the

device driver, therefore there is no need for the
application programmer to be conscious of this
matter

A simple manual is included in toppers-beginner-h8/dvice/readme.txt.

11

2006/5/23 TOPPERS Project certified 11

What is embedded?What is embedded?
Revising the SESSAME Revising the SESSAME
introductory seminarintroductory seminar

１．Checking the development tool
２．Embedded? Revising the SESSAME introductory

seminar
３．Confirming operation of non-OS teaching material
４．What is Real-Time OS?
５．Constructing an instant noodle timer

Here, we will study about embedded systems in general. Also, we will confirm the specifications
of the instant noodle timer that we will build in this seminar.
Using the structural design covered in the SESSAME introductory level seminar, analyze the

requirement and construct a instant noodle timer. Download the non_os.srec to the
microcomputer board and conduct various tests.

12

2006/5/23 TOPPERS Project certified 12

What is an embedded system?
Confirming the targeted system

 Buried into various machinery, is a computer which
controls the specific machinery
“embedded” is a loose term, the range where “embedded system”
may vary depending on the interpreting person(s)

ex) plant control, PDA, game machine
 Here, “embedded system” will be used as a broad

term
In exaggeration, anything excluding personal computers and
general-purpose computers, such as mainframes, are considered
embedded systems
It can also be said that it is a system made for specific purposes

In this seminar, anything excluding general-purpose computers are classified as embedded
systems.
There are times where a narrow definition of embedded system (where appearance is not a
computer) is called a deeply embedded system.

The following are examples of embedded systems:
・electric household appliances （microwave oven, washing machine, dryer, air conditioner)
・audio visual appliances（television, video machine, digital camera, audio devices)
・amusement/educational appliances（game machines, electronic musical instruments, Karaoke,
slot machines)
・personal schedule appliances（PDA, electronic organizer, car navigational system)
・computer peripheral equipment（printers, scanners, disks, CD-ROM drives)
・office appliances（copy machines, fax machines)
・communication appliances/terminals（telephones, answering machines, mobile phones)

network equipment（exchanger, PBX, network router, HUB)
・transportation machinery（automobiles, traffic signals, trains, aircrafts, ships)
・industrial controls／factory automation appliances（plant controls, machinery, industrial robots)
・building appliances（building illumination, air conditioners, electrical systems, elevators)
・medical appliances／welfare appliances（sphygmomanometer , electrocardiogram, x-ray
machines, CT scanners)
・Space／military（rockets, satellites, missiles)
・other business appliances（data terminals, POS terminals, vending machines)
・other processing appliances（syncroscope, IC testers, electrical meter readers)

13

2006/5/23 TOPPERS Project certified 13

Diversity of embedded systems
Manifold and there is no clear technical education
 Embedded systems are manifold from many aspects, such as in

system size and property
 Currently, there is no effective classification index proposed
 Equation that affects embedded system development:

Total cost = development cost + manufacturing cost x
number of manufactured product

Plant controls

Aircraft

FA
Medical
appliances

Building appliances
Network
appliances

OA Household
appliances

AV appliances Game machines

Automobiles
Communication
devices

Also, time-to-market factor needs to be added. Development costs
cannot be ignored with mass production of recent years

Number
manufactured

1 mil10001

Characteristics of embedded software development are as follows:
・Programming closely related to hardware

Because hardware construction and peripheral devices differ in every system,
programming that handles hardware directly is needed. Development can be difficult
because technical know-how is greatly needed.

・Separation of development tool and target environment
It is not always possible to program on the target system. Cross development tool, remote
debugging and simulation may need to be considered upon development. Also, there are
systems where system verification is required without suspending the current system.

・Harmonious and parallel development with hardware (may be needed)
Verification and debugging before the target system is ready is becoming possible.

・Various platforms (hardware, operating systems)
In many cases, the system is optimized to the hardware and/or operating system.

・Cost required for verification is considerable
Verification for high reliance, indecisiveness due to timing, and checking target appliance
by running the appliance, costs required can become considerable.

・Software construction for exceptional treatment may become necessary.
・A prerequisite that the software within the system can be trusted

14

2006/5/23 TOPPERS Project certified 14

Current trend of embedded systems
Transitions within embedded system developments
 Broaden range in use of embedded systems

 Expansion and complexity of traditional embedded systems

 Reduction of development period (time-to-market) and cost
down

 Fluidity of borderline between software and hardware

Complex appliances, digitalization, network use

Advanced user interfaces

Better functionality and value added due to computer control

Securing quality and reliability of system becomes an issue

Digital consumer (mobile phones, digital appliances, ITS, etc.)

With the current trends, reutilization of design assets has become a point to be taken of notice.

・ Reutilization of design assets
As a common subject between software and hardware design, effective use of design assets
has become indispensable. There are two directions to this inclination.
One is to reuse company assets constructed in the past. Inefficient development can turn into

a legacy system. To avoid such turnout, acknowledging and re-factoring assets are necessary.
Another is the case where purchasing software parts/IPs into the constructed asset is utilized.

Since developing the software in-house cannot correspond to time reduction demands and
diversity of technical systems, investment becomes extremely costly. To solve these points,
demand for open source embedding systems is desired.

・Obstruction factors to reutilizing design assets
One obstruction factor is the extreme diversity of hardware, processor, operating systems,
middleware, and network forms. These need to be selected by enclosure. Also, high cost
needs for testing is another factor.

15

2006/5/23 TOPPERS Project certified 15

Characteristics of embedded systems
4 Pillars
 Purpose specified system

the whole system is composed for a specified purpose
 Resource limitations

Cost down, lowered electricity consumption, lighter weight
appliances

 High reliability is demanded
Malfunction of system directly ties in to malfunction of appliance
System repair requires high costs

 Real-time is essential
Fast operation is required, but it is necessary that the system runs in
compliance with what the appliance is bound to do

Most embedded appliances are real-time systems

With diversification of embedded systems, there are several distinctive features.
•Exclusive system

The whole system is designed exclusively for one objective.
•Strict resource limitation

Rigorous costdown is desired, especially with mass production
Reduced electricity consumption, running environment factor (temperature, executing
environment), and downsizing are some special restrictions.

•High reliability
Because system errors, in many instances, may directly affect mechanical error, it is
impossible not to offer guarantees at all. It may come in conflict with PL laws.
System redressing may become costly
User expectations exist for mechanical reliance

•Real time
Operation in guidance with the time requirement of the control target machine is desired
This does not mean that speed covers the requirement
A system that fulfills the requirements is a Real-time system

16

2006/5/23 TOPPERS Project certified 16

Revision of SESSAME introductory seminar
Revision using teaching materials

 SESSAME embedded software engineer seminar
For embedded software development, using

Electrical water boiler and Shishiodoshi as
examples, structural designing techniques for
embedded programming
requirement assessment → construction → implementing → testing

In this seminar, let us explain by utilizing teaching
materials, about embedded structural designing.

requirement assessment → construction → implementing → testing

About the SESSAME embedded software engineer seminar
The Society of Embedded Software Skill Acquisition for Managers and Engineers (SESSAME) is

an organization committed to training embedded software engineers and managers through
designed curriculums and research for the basis of the training and tool development for training.
In the introductory seminar, analysis, design, programming, and testing is the focal point.

Beginning with the analysis and designing of the embedded system, it goes on to introduce the
techniques for analyzing, designing and testing.

17

2006/5/23 TOPPERS Project certified 17

What to make with the microcomputer board?
A timer that notifies the best moment for eating
 Create an “Instant noodle timer” using a microcomputer board
 What are the specifications?
After turning switch on, to confirm execution blink
LED at one second interval.

By turning timer startup switch on, the timer
starts; when off, the timer stops. Initial timeout is
one minute.

During execution, turning the timer extension
switch on, extends timeout by one minute.
Turning it on twice extends timeout to three
minutes.

Blink timer LED every 10 seconds to confirm
timer execution, at timeout, blink for 30 seconds.

Before developing．．．

A regular timer is composed by a LCD displaying the time and a buzzer. With the AKI-H8/3069F
board, because the only devices are a LED and a switch, time and timeout notification is done by
the LED.
For time notification, the power (confirm) LED blinks at one second intervals. Timer notification is
done through the timer display LED. When the timer is started, it will blink at 10 second intervals.
For timeout notification, the timer display LED blinks at 30 second intervals for notification.
Starting the timer is done by turning the timer switch ON, and stopping the timer is accomplished
by turning the timer switch OFF. Initially the timeout setting is one minute. Turning the timer
extension switch on extends the timeout time by one minute increments.

Corresponding relation with actual device
analysis level name actual name H8 port number
•Timer start switch DIPSW1-1 P50
•Timer extend switch DIPSW1-2 P51
•Power (confirming) LED LED1 (red) P46
•Timer display LED LED2 (green) P47

18

2006/5/23 TOPPERS Project certified 18

Revision of SESSAME introductory seminar

 Embedded development begins with requirement
assessment

requirement
assessment

construction

implementing

testing

① event list

② data dictionary

③ context diagram

④ data flow diagram

⑤ process specification

① structure chart

② module specification

As mentioned before, an embedded system is a system where high reliance and real-time nature
is required. On the contrary, due to the expanding scale of systems in recent years, decline in
quality and securing maintenance has become a problem. Aiming to solve these problems and
making the system more visual, let us begin by analyzing the requirements to construct the
system.

Requirement analysis is where comprehension and interpretation of the development target
system is accomplished. First, analyze by considering and arranging what the required system is,
not how to satisfy the specifications. (WHAT point of view)

The SESSAME requirement analysis begins by assessing the requirements; structural design
comes in at the designing stage. With the structural design, the focal point is how to build based
on the results of the requirement analysis. (HOW point of view)
Structural design is accomplished by the following development procedures

1. Event list
2. Constant diagram
3. Flow diagram
4. Process specification

If necessary, a data dictionary is made.

19

2006/5/23 TOPPERS Project certified 19

Requirement assessment 1
Event list, data dictionary

 Event list

 Data
dictionary

Reset timerStop timerTimer starter
switch OFF

Timer OFF

End actionPower OFF

NoneExtend timeout clock for
one minute

Time extender
switch ON

Add timer
clock

Blink timer LED every 10
secs. at 0.25 interval twice
Blink timer LED for 30 sec.
at 0.25 sec. intervals

Start timer
Notify start to user
Notify user of elapsed time
(timeout)

Timer starter
switch ON

Start timer

Power indicator LED to blink
at one sec. interval

Show current timeStart actionPower ON

responseactionstimulusevent

While timer is running, blink timer LED every 10 seconds, when
timeout occurs, blink timer LED for 30 seconds

Timeout display

Initial timeout is one minute, add one minute for each extensionTimeout clock

By making the power indicator LED blink at one second intervals,
notify the user of its current status

Initial setting

Event：occurrences that
happen outside the system
which affects the system

Stimulus：a way to send notice
of the event

Action：function which the
system executes when an
event occurs
Response：reply from the
system to the outside

“Blink” means that the light alternating state of on and off

An event list is a list which clarifies how the system deals with external occurrences. The list is
composed by four parts. By creating an event list, the action of the instant noodle timer will
become clear.
1.Event external occurrences which affect the system

It can be considered as an occurrence that the system cannot control
2.Stimulus information input of event occurrence
3.Action system function(s) for when an event occurs
4.Response external response when an event occurs
With the instant noodle timer, an event list is made in regard to the four events.
Collection of terms, along with comments, used for analysis and designing are entered into the
data dictionary. The terms should be in layman’s terms, and when used during development,
should be uniform.
Caution!: during requirement analysis, the names used for stimulus are logic names;
implementation dependent names should not be used.

• Timer start switch x SW1
• Timer extend switch x SW2

20

2006/5/23 TOPPERS Project certified 20

Requirement assessment 2
Context diagram, data flow diagram

 Context diagram

 Data Flow
Diagram

Timer
system

TIMER User I/F

Time
notification

Status notification by
LED

Status
setting via
switchChart showing relation between

system and external terminator

Top of the data flow diagram

キーを管理
する
１

時間を制御
する
２

タイマー時間 タイマー開始通知
タイマー終了通知
時間延長通知

時間表示

タイムアウト表示

タイマー開始通知
タイマー終了通知
時間延長通知

ＤＦＤ０

スイッチのオン、オフ

time

Switch ON/OFF

Timer start indication
Timer end indication
Time extension indication

Time display

Timeout display

Timer start indication
Timer end indication
Time extension indication

Key control

1

Time control

2

A context diagram is a notation utilized also with UML. It is a diagram which shows the relation
between the system and external terminator(s). User I/F (user) and timer is designated to be the
terminator with the instant noodle timer system, but if the timer is thought to be part of the system,
then it is not necessary to designate it as a terminator.
As a description for the flow diagram a data flow diagram (DFD) is used. Data flow diagram is

composed by the circle (process convert) and arrows that lead to (input data) and lead out (output
data) of the circle. The circular portion performs conversion to the input data. With the instant
noodle timer system there are two processes:
1. Process 1: key management process. By turning the switch on/off, data is converted to three
output data: timer start notification, timer stop notification, and time extend notification.
2. Process 2: time control process. Timer time and request notification from the three switches is
converted to output data of time display and timeout display.
These data flow diagrams are the first flow diagrams extracted from the system and is therefore

called DFD0.

21

2006/5/23 TOPPERS Project certified 21

Requirement assessment 3
Detailed data flow diagram

 Process 1 detailed  Process 2 detailed
Key control functions detailed
by diagram

Time display functions
detailed by diagram

Process 1 Process 2

Timer power
switch

Power switch
ON
1.1

Switch status

Power switch
OFF
1.2

Time extension
switch ON

Time
extension
switch ON

1.3

Timer start
display

Power switch
OFF

Timer end
display

Time extension
display

Time
display

2.1

Time display

Timer time

Time display
method

Idling
status 2.2

Timeout display

Timeout display

Timeout
idling
mode
2.3

Timeout
display
mode
2.4

Timer start indicator
Timer end indicator
Timer extension indicator

S1

Time display

Timeout display

Power LED blink at one second interval

Timer LED blinks at ten seconds interval

Blink LED for 30 second at timeout

Let us analyze the two processes of DFD0 in a detailed data flow diagram.
The switch status and time display method holds a condition. For detailing the condition, use the

status model. Process 1 is broken down to three processes: timer switch ON 1.1, timer switch
OFF 1.2, and timer extension switch ON 1.3. Process 2 is broken down into four processes: time
display 2.1, idling status 2.2, timeout wait mode 2.3, and timeout display mode 2.4.
There are two displays for timeout, time lapsed display every 10 seconds and timeout display.

22

2006/5/23 TOPPERS Project certified 22

Requirement assessment 4
Time display form condition model （Ｓ１）

 Ｓ１ holds three conditions

停止状態
（初期状態）

タイムアウト待ち状態 タイムアウト表示
タイムアウト

タイマー開始通知 タイマー終了通知

時間延長通知
（タイムアウト時間を延長）

Ｓ１状態モデル

電源オン

自動遷移電源オフ

電源オフ

S1 status model

Power ON

Power OFF

Power OFF

Automatic transition

Timeout

End timer notificationStart timer notification

Timeout displayTimeout idling state

Idling state
(initial condition)

Time extension notification
(extend timeout clock)

Here, the time display method has been modelized. Time display 2.1 is always displayed without
being affected by the time display method and therefore is not noted in the status model. As timer
functions, changes are made to three status conditions: idling status, timeout wait mode, and
timeout display.

23

2006/5/23 TOPPERS Project certified 23

Requirement assessment 5
Process specification （2.2-2.4）

 2.2 initial condition

 2.3 Timeout idling mode

 2.4 Timeout display mode

１. Reset timeout time

MT = 0、CT= 0

First time round:

１. set timeout time

MT = default timeout

For every extended time notification

１. extend timeout

MT += 1 minute
１. Request 30 seconds of timeout display

For every control cycle

１. Idling timeout display check

if CT is a multiple of 10 seconds:

request 2 seconds of timeout display

２. Renew current time

CT += Δ

MT is maximum time, CT is current time

Write a process specification document about the analyzed process. The document describes the
changes made from input to output. So long as the specification is adequately described, there
are no restrictions to how it is presented. In this example, a written specification was made, but it
can be a diagram or a condition model as from the previous pages.

24

2006/5/23 TOPPERS Project certified 24

Construction 1
Hierarchical structure diagram
 Hierarchical structure diagram based on assessment of data flow analysis

カ ップラ ーメン
タイマ ー

環 境
初 期 化

時 間 表 示 の
管 理

タイマ ー の
運 転 管 理

タイマ ー ス イッチ ＬＥＤ
経 過 時 間 監 視

時 間 管 理
制 御

ス イッチ
ドラ イバ ー

ＬＥＤ
ドラ イバ ー

状態 設 定状 態設 定

タイム ア ウ ト

時間 設 定

Timer Switch LED

Time
management

control
Switch driver LED driver

Initialize
state

Time display
control

Timer operation
control

Monitor time elapsed

Timeout

Time
set-up

Status
set-up

Status
set-up

Instant noodle
timer

Create a hierarchical structure diagram from the structure analysis data flow diagram.
Functions will be extracted naturally by the DFD process. Next, the control modules will be
extracted. In the above example, lapsed time monitor is the designated module to monitor time.
Last, external input/output module will be added. In this diagram the timer, switch, and LED is the
input/output module.

25

2006/5/23 TOPPERS Project certified 25

Construction 2
Structural diagram broken down into module units

 Divide units into process and device components

メインモジュール
（各プロセスに制御分割）

キー管理モジュール 時間制御モジュール

スイッチドライバー ＬＥＤドライバー

タイマー割り込み

timer0.c

device .c

タイマーの初期化Switch driver LED driver Initialize timer

Key management module Time control module Timer interruption

Main module
(divide control into separate

processes)

Divide the structure diagram into module units. Here, they are separated into two parts, modules
in relation with the DFD process and input/output modules.
Close examination is needed for module division. Details will be noted at time of review.

26

2006/5/23 TOPPERS Project certified 26

Construction 3
Module specification design

nonenoneInitialize switch hardwareInitialize switch

timer0.cnonenoneControl current time through
interruption of fixed time

Timer interruption

nonenumber
condition

Setup LED for lights on / offLED setup

conditionnumberRead in switch conditionSwitch read-in

nonenoneInitialize LED hardwareInitialize LED device.c

nonenoneInitialize timer hardwareInitialize timer
nonenoneDisplay LED for each timeTime control

nonenoneControl key status and relay
condition to time control

Key control timer0.c

nonenoneManage key and time control
within a given period

Main
SOURCEOUT PUTparameterOBJECTIVENAME

Based on module division, create a module specification document. The document can be
separated into interface specification and function specification. The specification of this slide is
the interface specification. Since the instant noodle timer itself is not a large system and the
specifications can easily be inferred from the objective, the function specification is omitted. The
following is a brief explanation for the two specifications.
1.Interface specification
Description should be made based on what the module is assigned to do. Clarifying the
input/output is important. As shown in the slide example, name, objective, parameter, and output
should be noted as separate items.
2.Function specification
Description should be made based on how to achieve the module function.
e.g. – key control

(1) If timer start switch is on, then notify timer start
(2) If timer start switch is off, then notify timer stop
(3) if timer extension switch is on, then notify time extension

27

2006/5/23 TOPPERS Project certified 27

Construction 4
Making nonfunctional requisites clear

 Time interim
handle through timer interim function

 Device interface
At least two switches are outfitted, sensed through polling
At least two LED ports are outfitted; lights turn on/off by
setting

 Product requirements
ROM less than 512KB, external RAM less than 16MB

 Error management mechanism
No specific requirements

Functions that are not shown need to be clarified as well. With the instant noodle timer, hardware
dependent function factors are part of the design. By separating factors which are implementation
dependent for analysis and designing, a more comprehensive analysis and design can be done
for the factors that are implementation independent. It is necessary to clarify non-function factors
so that implementation designing will become easier.
The following are some examples of non-function factors:

1. Time restrictions
Response time
Within system classification : hard real-time, soft real-time

2. Resource restrictions
ROM/RAM size
CPU power

3. System restrictions
development tool, factory inspection, maintenance in market

4. System security level
Fault tolerance, overload, fail safe

28

2006/5/23 TOPPERS Project certified 28

Implementation
Refer to implemented object

 Previously mentioned outfitted object non_os is
provided

 Details will be explained in the next section, “Movement
check of non-OS learning material”

Source file outfitted with main routine, two processes,
and interim.

timer0.c

Switch and LED control interfacedevice.c

Initialization of hardware when power is turned on
Vector table

start.S
sys_support.S

１．timer0.c
void main(void);
function to be executed after hardware startup, after device initialization, calls process 1
(switch_process) process 2 (timer_process) every 250ms.
void swicth_process(void);
timer extention switch; when the timer start switch changes, communicate information is written
into the shared memory area
void timer_process(void);
if the shared memory is set, the timer state transition is executed. Without relation to transition
state, LED blinks every second.
void timer_handler_entry(void);
timer interrupt program; interrupt occurs every 1ms, and base_time is incremented
２．device.c
void initial_key(void);
void initial_led(void);
initialize each device
Int get_key(int sw);
read-in key state corresponding to switch, ON/OFF
void set_led(int led, int req);
LED to reg state; ON turns light on, OFF turns light off

29

2006/5/23 TOPPERS Project certified 29

Test 1
What is a test?
 Objective of testing

• Expand the range of quality guarantee as much as possible
• Effectively detect malfunctions

 How to proceed with test
• Comprehensive testing

Overall testing
control pass test, function inclusion test, state inclusion test

• Pinpoint testing
Target testing to points where there may be malfunctions

borderline test, stress test
From past experience…

analyze the trouble and grasp the weak points

The effect of trouble is enormous
•Because of one excessive line, out of 3 million, AT&T suffered damages of 1.1 billion dollars.

Long distance calls were turned busy for nine hours because an error recovery code was
bypassed.

•General Motors had to make recalls due to a brake system bug
The stoppage distance was extended by 15-20 meters. 3.5 million cars were recalled,
several million dollars were sustained in damages.

•ARIANE5 rocket exploded
400 million dollars were sustained in damages due to overflow.

30

2006/5/23 TOPPERS Project certified 30

Test 2
Test awareness
 Consideration on how to test

（comprehensive, pinpoint）
 A test is…

・planned sensibly
・successful when you find a malfunction
・diverse in method, and needs to be chosen to suit objective

 When you get better at testing, development with
less malfunctions become possible

 Be conscious of testing so that you can create a
malfunction-less software

How to test
Embedded testing phase : V model

∇

requirement analysis ＼ requirement ／ system test
basic design ＼ architecture ／ combined・function test

detailed design ＼ structure ／ unit test
implementation ＼ logic ／ （compiler）

＼ ／

code

31

2006/5/23 TOPPERS Project certified 31

Confirming operation of nonConfirming operation of non--OS OS
teaching materialteaching material

１．Checking the development tool
２．Embedded? Revising the SESSAME introductory

seminar
３．Confirming operation of non-OS teaching material
４．What is Real-Time OS?
５．Constructing an instant noodle timer

Using the implemented training material, let us confirm, build, and run a simple test.

32

2006/5/23 TOPPERS Project certified 32

Implementing knowledge 1
Startup

 In general operating
systems, the OS gives
command to main()

 When there is no
operating system, you
must create a program
that gives command to
main()

 This process is called
startup

Power ON

Read in reset vector value
Run program from

given address

CPU, co-processor,
Initialize basic hardware

and memory
Setup stack

Diverge to user program

start

main

/*
* instant noodle timer main function
* after initializing hardware and data, start switch_process and timer_process every 250ms．
*/

void
main(void)
{

unsigned long timer250;

initial_key(); /* initialize switch */
initial_led(); /* initialize LED */
initial_timer(); /* initialize timer */
base_time = 0;
event = 0;
timer250 = 250;
enaint(); /* permit interrupt */
up_sw = get_key(UP_SW); /* read-in current timer extension sw */
start_sw = get_key(START_SW); /* read-in current timer start sw */
timer_state = STATE_STOP_TIMER; /* initial timer_process state */
sec = 0;
alaem = 0;
timer_led = OFF;
pow_led = OFF;

for(;;){ /* endless loop */
if(timer250 <= base_time){

switch_process();
timer_process();
timer250 += 250;

}
}

}

33

2006/5/23 TOPPERS Project certified 33

Implementing knowledge 2
Interim action
 Interruption can be made when the hardware wishes to

insert a particular action to the CPU
(timer_handler_entry)

 Set the timer_handler_entry to the interrupt vector table
and setup the interrupt to the hardware

interim occurs every 1ms

timer_handler_entry timer_handler_entry timer_handler_entry

base_time++; (1) base_time++; (2) base_time++; (3)
interim

Normal
execution

/*
* Switch process
*/

void
switch_process(void)
{

unsigned char sw;

sw = get_key(START_SW);
if(start_sw != sw){

if(sw == ON)
event |= EVT_TIMER_START;

else
event |= EVT_TIMER_STOP;

start_sw = sw;
}
sw = get_key(UP_SW);
if(up_sw != sw){

if(sw == ON)
event |= EVT_TIMER_COUNT;

up_sw = sw;
}

}
/*
* Timer interrupt function
* start every 1ms. Start from base_time has millisecond counts
*/

void
timer_handler(void)
{

base_time++;
}

34

2006/5/23 TOPPERS Project certified 34

Implementing knowledge 3
Verifying the source code

 Outfit process1 (key control) as switch_process() and
process2 (timer control) as timer_process()

 The two processes are called by main() every 250ms
and is executed

 base_time is incremented at one minute intervals by
interim function. main() monitors base_time through
polling

/*
* Timer process
*/
void
timer_process(void)
{

if(event != 0){ /* notification from switch_process */
if(event & EVT_TIMER_START){ /* start */

timer_state = STATE_ACT_TIMER;
current_time = 0;
max_time = 60*1000;

}
if(event & EVT_TIMER_STOP){ /* stop */

timer_state = STATE_STOP_TIMER;
alaem = 0;

}
if(event & EVT_TIMER_COUNT){ /* timeup */

if(timer_state == STATE_ACT_TIMER){
max_time += 60*1000;

}
}
event = 0;

}

35

2006/5/23 TOPPERS Project certified 35

Study
Implementation with interrupt and scheduling

 If it is a minimal development, the outcome is
clear-cut

Because the example is simple, it is easily implemented. But
with complex systems, implementation of modules are difficult
to create due to hardware dependency which cannot be clearly
defined

Actual system load is unknown
It is unknown how much load the program is putting onto the
system
→ assurance of real-time

/* continued from previous page */

switch(timer_state){ /* judge timer state */
case STATE_ACT_TIMER: /* timer executing state */

if(current_time >= max_time){
alaem = 15*4;
timer_state = STATE_TIMEOUT;

}
else if((current_time % (10*1000)) == 0){

alaem = 1*4;
}
current_time += 250; /* timeup */
break;

case STATE_TIMEOUT: /* timeout state */
timer_state = STATE_STOP_TIMER;
break;

default: /* timer stopped state */
break;

}
if(++sec > 3){ /* display time：1sec past */

pow_led ^= ON; /* power check LED ON/OFF */
sec = 0;

}
if(alaem > 0){ /* request warning：250ms lapsed */

timer_led ^= ON; /* timer display LED ON/OFF */
alaem--;

}
else /* if there is no warning request and timer display LED is ON, then turn timer LED off */

timer_led = OFF;

set_led(TIMER_LED, timer_led); /* timer display LED setting */
set_led(POW_LED, pow_led); /* power check LED setting */

}

36

2006/5/23 TOPPERS Project certified 36

Test environment 1
Role of the monitor

host

H8

target
（microcomputer board）RS-232C cable

monitorcommand

response

・The monitor is a program on the target
・It receives commands from the host and responds by
supplying debugging functions

•User program download
•Execute user program

37

2006/5/23 TOPPERS Project certified 37

Test environment 2
Merits of using a monitor

Compared to writing onto a ROM

1. Saves time
• Writing time, ROM exchange time

2. If the ROM is a flashROM, there is no need to worry
about rewrite restrictions

38

2006/5/23 TOPPERS Project certified 38

Test environment 3
Memory mapping

・ROM written
Command is allocated to ROM

2．ROM written（no monitor）

User
program

command
ROM

variable
RAM

1．Debugging （monitor）

monitor
ROM

User program
・command
・variable

RAM

・debugging through a monitor
User programs are downloaded
all to RAM

39

2006/5/23 TOPPERS Project certified 39

Execution procedure

Refer to attached material for actual execution
procedure

For detailed operational procedures, see the attached <Tools use direction> booklet.
(BeginnerTranningSeminarH8Tool0010102.pdf)

40

2006/5/23 TOPPERS Project certified 40

Test/confirm operation
Conduct a pinpoint type test

1. Turn power ON and check that power LED is
blinking

2. Turn timer ON/OFF switch, confirm that timer starts
up

3. Confirm that timeout is notified in one minute
4. Turn time interim ON/OFF switch, confirm that

timeout is extended
5. If there are no problems, conduct the test

If there is a problem, speak up!!

Turning the power ON starts the instant noodle timer.
Using the two switches, check if the timer activates as specified.

41

2006/5/23 TOPPERS Project certified 41

What is RealWhat is Real--Time operating Time operating
system?system?

１．Checking the development tool
２．Embedded? Revising the SESSAME

introductory seminar
３．Confirming operation of non-OS

teaching material
４．What is Real-Time OS?

Here, significance for using RTOS, such as the TOPPERS/JSP kernel, to design systems is
explained. In succession, a quick note on the μITRON4.0 specification and description of task
and task scheduling will continue.
Afterwards, using the board, execution of the sample program timer1 on the TOPPERS/JSP

kernel will be done.
μITRON4.0 specification Ver.4.00.00 can be downloaded from the following site:

http://www.assoc.tron.org/eng/document.html

42

2006/5/23 TOPPERS Project certified 42

Role of the Operating System (OS)
There is no clear definition of an operating system

 Abstraction, virtualization, and diversification of
computer property
Make property accessible from application
Improve application portability

 Collectively manage computer property efficiently and
securely
Efficiently utilize property – i.e. make access possible by multiple
applications
Elevate security by controlling accessibility to property

The main objective of an operating system is to manage the computer system efficiently. It has
evolved by pursuing this objective. To cope with the rapid progress of hardware, means for
software that does not depend on hardware and improving user convenience plays a great role.
As part of an operating system, a file system virtualizes and multiplex hardware resources and

can be said to be a safe and efficient managing system.

43

2006/5/23 TOPPERS Project certified 43

What is a Real-Time OS （RTOS)?
Operating system to construct a real-time system
Standpoint of requirements for construction of a

real-time system differs depending on the operating
system

 Holds forecast possibility
each service time of OS is priorly established

 Has capacity for real-time system
supports priority integration and precedence upper limit protocol

 Control time restriction （handled partially by some
study base）
The OS takes into account the time restriction of each process and

determines the scheduling
 Speedy response

There are many definitions to a real time system. A basic definition is “a system dependent to
result output time with correct process result added to the result value”. A real-time system is not
only a system where a fast response is demanded. Many embedded systems are real-time
systems. Within these, there some where real-time form is needed. A system which demands a
critical real-time form is called a hard real-time system.
In the above factors, many commercial real-time operating systems have prediction possibilities,

but the levels differ depending on the operating system. Also, functions to constructing real-time
operating systems are supported. Time restriction control is still in research.

During synchronization processing, a task with a low priority may hinder a task with a high
priority. When the task with a high priority needs to process a critical execution, this becomes a
problem. There are several ways to deal with the problem.
•Basic Priority Inheritance Protocol

Gives the low priority task hindering the high priority task a higher priority
•Priority Ceiling Protocol

When entering a critical session, a blocking mechanism is invoked to prevent chain blocking

44

2006/5/23 TOPPERS Project certified 44

Composition of Real-Time Operating System
Real-time kernel

 Core module of RTOS
 Mainly handles property that is common to most

systems
processor, memory, timer, etc.

 Many do not have protective functions
 May be called “Real-time monitor” or “Real-time

executive”
when employing real-time kernel exclusively,
RTOS ＝ Real-time kernel

Two characteristics of embedded system seen from operating system point of view
• Protective functions are not essential

The sole design purpose of an embedded software is to control the target embedding device.
This means that the software itself is fixed to the device. Accordingly when debugging and
testing is through, the premise that the application software is reliable can be made. Therefore,
functions for protection is not necessary needed.

• I/O in need of absolute support does not exist
There is an opinion that resources which operation takes time should be materialized on the
kernel. The I/O device is slow compared to processors and memory, and is placed on the
kernel minimally. Also, I/O devices common to many embedded devices are nonexistent and it
is rare for the same I/O device to be shared by multiple applications. However, embedded
systems with characteristics similar to general systems has become popular in recent years
(e.g.- PDA, mobile phones)

45

2006/5/23 TOPPERS Project certified 45

Main functions of the Real-Time OS
 Function of real-time kernel

・multitask mechanism → accession and virtualization of
processors

・linkage between tasks, synchronization mechanism
・interim control/processing, anomaly control/processing
・time synchronization/control → accession and virtualization of timers
・memory control →accession and virtualization of memory
・system control

etc.

 Functions outside of real-time kernel
・input/output control function
・communication/network function
・user interface function (e.g. GUI)
・program module control function etc., etc.

Multitask structure
A task is a unit of parallel executed programs. A program that is processing a task is executed in

order. Also a program with different task is executed in parallel. Therefore it can be said that the
processor has been virtualized/multitasked. A multitask structure is where multiple tasks are
executed in a pseudo parallel fashion. With a single processor, only one task can be executed at
a time. In reality, it is the illusion that multiple tasks are executed simultaneously.

Time synchronization/control
ITRON4.0 controls the system time and event occurrences by relative time. Each task can be

run by separate relative time occurrence event, and therefore can be said that the timer is
virtualized.

Memory control
General operating systems such as UNIX and Windows utilizes virtual memory for running user

programs in separate memory spaces. ITRON, which does not have a memory preservation
function, utilizes a memory pooling function and controls memory areas dynamically.

46

2006/5/23 TOPPERS Project certified 46

Categorizing Real-Time OS by architecture
General OS type and real-time kernel type
 General OS type  Real-time kernel type

Middleware Middleware

Application

Device
driver

Device
driver

Real-Time OS

Real-time kernel

Device
driver

Middleware

Device
driver

Middleware

Application

OS functions are abundant

Size is relatively large

Response time is generally slow

Device driver is generated with a
separate API

Kernel functions are limited

Kernel size is small

Response time is generally fast

Device driver and application are
the same API

Operating system role
•Abstract, virtualize, and multiply computer resources

Access to resources from application is made easier and portability from application is
improved

•Collectively control resources safely and efficiently
Simultaneous access to resources by multiple applications is made possible. Access rights to
resources is controlled, improving security

There is no clear definition for what range of software is to be used for an operating system. For
example, a broad software such as the Windows system can be considered to be a part of an
operating system for its role. However, compared to real-time kernel of embedded systems, the
size and functions differ greatly.

47

2006/5/23 TOPPERS Project certified 47

Advantages of utilizing Real-Time OS
Structuring of software becomes easier

 Structuring of software becomes easier

 Conceal difference between hardware (processor)
Software development base using software partsSoftware development base using software parts

Capable of developing software without detailed
knowledge of hardware

 Construction of time restricted multiple processes
made easier

(approach differs from modulation by structural design technique)

Enhance productivity, maintenance, and reliability
through structuring

Merits for utilizing real-time operating system
•Task utilizing software structure

By assigning independent processing to tasks, multiple subsystems can be processed on the
same processor, separate I/O devices and event processing becomes possible. Separation of
logical processing order and time based processing order can be achieved. The program
accounts the logical processing order by task unit therefore making time based processing
order execution possible.

•Construction of multi-processing system with time restriction is made easy
By separating logical processing order and time based processing order, maintenance and
recycling is improved. This becomes the base for software development (component base
development) utilizing software parts.

•Conceal hardware (especially processors) differences
It is possible to develop applications without knowledge of hardware specifics. This does not
mean that it is not necessary to the project. It is said that “A real-time kernel is the processor’s
device driver”

48

2006/5/23 TOPPERS Project certified 48

Disadvantage of using Real-Time OS
Engineer with knowledge of the OS is needed

 Decline of performance due to OS overhead
 Memory consumption by OS or executing tasks

 During obstacle analysis, it may become necessary
to analyze within the OS

An engineer who has knowledge of the An engineer who has knowledge of the
operating system is needed within the operating system is needed within the
productionproduction

TOPPERS/JSP kernel is a Real-Time OS which
memory consumption is low

Demerit of utilizing real-time operating systems and avoidance scheme
•Operating system overhead affecting execution performance
•Memory consumption by the operating system

In exchange for merits utilizing operating systems, memory efficiency declines. However, by
the improvement of implementation techniques, memory size has become small.

•Debugging and testing becomes difficult
Well conducted synchronization and communication between tasks are necessary.
Techniques based on model base designing and simulations to make the software more visible
is also effective.

•Analysis becomes difficult due to operating system black box manifestation
Comprehend the internal works of the real-time operating system. Various development tools
can be used, such as OS monitoring, for improvement.

49

2006/5/23 TOPPERS Project certified 49

μＩＴＲＯＮ specification kernel functions
（μＩＴＲＯＮ4.0 specifications）
 Kernel functions

 Service call number

Task management function

Task dependent synchronization function

Task exception handling function

Synchronization and Communication
functions

Extended Synchronization and
Communication functions

Memory pool management function

Time management function

System state management function

Interrupt management function

Service call management function

System configuration management
function

Full set

Standard Profile

Automotive Control Profile

Minimum set

Service call：166（13*） staticＡＰＩ：21

Service call：70（13*） staticＡＰＩ：11

Service call：43（11*） staticＡＰＩ：８

* Number in brackets are non-task
context service calls

Service call is an interface used when tasks, such as application programs, send requests to the
kernel. General kernel functions are as follows:
•Task management function

Function used to handle/refer task condition directly. Some of the functions included are task
create and delete, start and stop, cancel start request to task, and task precedence alteration
and reference function.

•Task dependent synchronization function
Synchronization function for directly handling the task condition. Task wakeup wait function
and wakeup function, cancel wakeup request function, force cancel task waiting function,
transition to force wait state function, and delay task execution function are some examples.

•Task exception handling function
Function which handles task exceptions within the task’ s context. Functions included are the
ability to define a task exception routine, to request a task exception handling, to enable and
disable task exception handling, and to reference the state of a task exception handling.

•Synchronization and communication functions
A task is a function used for synchronization/communication between tasks by an independent
object. Functions include semaphore, eventflags, data queue, and mailbox.

50

2006/5/23 TOPPERS Project certified 50

What is a task?
Think on a small scale using tasks
 A task is an execution path through address space
 Accession and virtualization of processors
 Benefits of tasks

－ seems as if each task has its own CPU
－ breaks down a large problem for analysis

CPU

CPU CPU CPU CPU

task1 task2 task3 taskn
…

A task is a program execution unit with a purpose. A program within a task is executed in order.
Differing task of a program is executed in parallel in a pseudo manner. Real-time operating
system supports the multitask structure. A multitask structure are multiple tasks executed with the
illusion of parallelism. With a single processor, only one task can be executed at a time. It is the
illusion that multiple tasks are being executed that is created.

51

2006/5/23 TOPPERS Project certified 51

Diagram of the task transition state

Store
CPU

Only one person is
executing at a time

People waiting for
occurrence

People waiting for
store to open

READY state

WAITING state

RUNNING state

Why are multiple tasks necessary? In real-time operating systems, the motive differs from
multitask (TSS) of general systems. With real-time operating systems, independent processes
are assigned to independent tasks, therefore multiple subsystems are processed by a single
processor and separate I/O devices and event processing is made possible.
How can this be achieved? It can be achieved by separating the system into a logical processing

order and timely processing order. Logical processing order is defined in a program and is
executed in the timely processing order. By this exchange, the program maintenance and
reusability improves, and induction of software parts developed externally is made easier.

52

2006/5/23 TOPPERS Project certified 52

Transition of task condition
Singular task running at one time
 μＩＴＲＯＮ4.0 specification task condition transition

dispatch

preempt

WAITING

Waiting state

Dual waiting state

Forced wait state

DORMANT

Dormant state

NON-EXISTENT
Unregistered state

Create Delete

Release from waiting

Resume Suspend

Wait

Release from waiting Forcibly terminate

Forcibly terminate

Forcibly terminate

READY

Ready state

Resume

Suspend

Activate

RUNNING

Running state

Exit
Exit & delete

WAITING-SUSPENDED

SUSPENDED

Task conditions
(1) RUNNING

Task is currently running. However, if non-task context is running, the task holds its current
RUNNING state unless otherwise specified.

(2) READY
Task is ready to execute but cannot do so due to a higher precedence task is executing.

(3) WAITING
Execution is blocked due to invocation of a service call specifying the condition that must be
met before task execution.

(4) SUSPENDED
Execution is forcibly halted by another task.

(5) WAITING-SUSPENDED
State where the task is waiting for a condition to be met and is suspended.

(6) DORMANT
State where the task has not yet begun execution or has already finished. When in this state,
the context information is not saved

(7) NON-EXISTENT
Task does not exist because it has not yet been created or has been deleted

53

2006/5/23 TOPPERS Project certified 53

Basic transitional service calls
Task management functions & task associated
synchronize function
 Task management

functions

CRE_TSK create task
act_tsk,iact_tsk activate task
can_act cancel task

activation request
ext_tsk exit task
ter_tsk terminate task
chg_pri change task

priority
get_pri reference task

priority

 Task associated synchronize
functions

slp_tsk put task to sleep
tslp_tsk put task to sleep

(with Timeout)
wup_tsk,iwup_tsk wakeup task
can_wup cancel task wakeup

requests
rel_wai,irel_wai release task from waiting
sus_tsk suspend task
rsm_tsk resume suspended task
frsm_tsk forcibly resume

suspended task
dly_tsk delay task

•Static API
With the μITRON4.0 specification, the method to statically create the object which composes
the system has been standardized and static API was prescribed. In the above slide, the
function written in capital are static APIs. The static API is defined in the configuration file.
Using the configurator (TOPPERS/cfg/cfg_exe) create the include file (kernel_id.h) and C
language file (kernel_cfg.c). Other service calls are defined in the C language interface. Here,
CRE_TSK is used as an example.

CRE_TSK(ID tskid, {ATR tskatr, VP_INT exinf, FP task, PRI itskpri,
SIZE stksz, VP stk});

【Parameter】
ID tskid ：task ID number
ATR tskatr ：task attribute ((TA_HLNG || TA_ASM) | [TA_ACT])
VP_INT exinf ：task extension information
FP task ：task start address
PRI itskpri ：task initial priority
SIZE stksz ：task stack size (in bytes)
VP stk ：task stack space base address

54

2006/5/23 TOPPERS Project certified 54

Multitask structure organization
What makes multitasks possible

 Multitask structure is made for concurrent operation
by one central processing unit of two or more
processes
Make it appear as multiple tasks are executed simultaneously, where in fact
there is only one task executed at a time

 Dispatch
(dispatcher：switching module)

 Scheduling
(scheduler：task determination module)

 Scheduling algorithm

Multitask structure organization factor
•Dispatch (task dispatch, task switch)

Switching of currently executing task on a processor with another. The module that performs
the dispatch is called a dispatcher.

•Scheduling (task scheduling)
Process which determines what task is to be executed at what time. In many real-time
operating systems, it is the process that determines which task to be executed next. Module
that executes the schedule is called a scheduler.

•Scheduling algorithm
The method which determines the next executed task. In most real-time operating systems,
including TOPPERS/JSP kernel, preemptive precedence based algorithm is supported. There
are real-time operating systems which use other scheduling algorithms as well.

55

2006/5/23 TOPPERS Project certified 55

Scheduling algorithm of μＩＴＲＯＮ
Preemptive priority based scheduling
 Priority based scheduling

 Task with the highest priority is executed
 Lower priority tasks will not be executed until the high priority tasks are fully

executed
 When tasks are prioritized at the same level, it is executed on a FCFS (First

Come First Served) basis

Priority1

Priority2

Priority3

Precedence

Task A

Task B Task C

Task D

When priority1 task A,
priority2 tasks B and C
and priority3 task D
have been activated,
they are executed as in
the diagram on the
right

•Priority based scheduling
Typical real-time scheduling mechanism of event driven scheduling. Task with the highest

precedence is executed first. The task with the higher priority is executed. Until the task with high
precedence is finished executing (or is terminated due to other reasons), tasks with lower
precedence will not be executed. Preemptive and non-preemptive implementation is possible. For
setting of precedence, static priority assignment, dynamic priority assignment, and dynamic
priority changing can be set.
Task priority with μITRON is noted as integers larger than 1; the smaller the value, the higher

the priority.

56

2006/5/23 TOPPERS Project certified 56

Scheduling algorithm of μＩＴＲＯＮ
Preemptive priority based scheduling
 Preemptive scheduling

 when a high priority task turns to RUNNING state, the lower
priority task will be moved to READY state even if the task was in
execution

 interruption is the key to changing of status switching

Priority 1

Priority 2 Task B

Task A

Task A has high priority and short execution time, Task
B has low priority and long execution time

ExitActivate

Preempt
Continue
execution

• Preemptive and non-preemptive
Preempt means to appropriate, seize, or take for oneself before others

Preemptive scheduling : mechanism where a process is in execution, if the need arises to
switch processes, the switch is made. There is a need to be a mechanism where a process
can be halted and resumed. Normally, the operating system prepares such mechanism and
the application program will not be aware of the switch. Be aware that when the interrupt
occurs, resources apart from the processor is still secured.
Non-preemptive scheduling : when the process starts execution, no interruption is allowed
until the execution is finished.

•Separation of logical process order and timely process order
In the above mentioned task A and task B, if execution of task A is attempted without a task
mechanism, a periodical judgment procedure needs to be included into task B. By this, the
maintenance and reusability of task B declines. Also, reply may decline and overhead due to
checking may occur.

57

2006/5/23 TOPPERS Project certified 57

Constructing an instant noodle Constructing an instant noodle
timertimer

１．Checking the development tool
２．Embedded? Revising the SESSAME introductory

seminar
３．Confirming operation of non-OS teaching material
４．What is a Real-Time OS?
５．Constructing an instant noodle timer

Let us make an instant noodle timer using RTOS.
In this development tool, the debugger cannot be used, so utilize the system log display function
for debugging.

58

2006/5/23 TOPPERS Project certified 58

Timer construction using JSP kernel 1
Introduction of sample program

 Composed from two tasks
 ENTRY_TASK : timer power switch status

corresponds with timer LED
 TIMER_TASK : power LED to blink at one

second interval
 When ENTRY_TASK is activated, TIMER_TASK

is activatied by act_tsk
 Debugging is done by using the syslog_n function

and showing current status on the log

The system log is not directly displayed by the task which requested the log. Since it is
accumulated in the log table then displayed by LOGTASK, display through non-task context is
possible. By lowering the LOGTASK priority, the log can be displayed without hindering the usual
task execution. However, if execution rights is not given to LOGTASK over a long period, it is
possible that the log message may be lost.

59

2006/5/23 TOPPERS Project certified 59

Timer construction using JSP kernel 2
Configuration file （timer1m.cfg）

 Define task by CRE_TSK
CRE_TSK(ENTRY_TASK, { TA_HLNG, 0,
entry_task,DEFAULT_MAIN_PRIORITY,STACK_SIZE, NULL});
CRE_TSK(TIMER_TASK, { TA_HLNG, (VP_INT) 0, timer_task,
TIMER_PRIORITY, STACK_SIZE, NULL });

 Establish serial driver and driver initialization and
interrupt through serial.cfg

 Timer interrupt and time service setup through
timer.cfg

#define _MACRO_ONLY
#include "./timer1.h"

INCLUDE("¥"timer1.h¥"");
CRE_TSK(ENTRY_TASK, { TA_HLNG | TA_ACT, 0, entry_task, DEFAULT_MAIN_PRIORITY,

STACK_SIZE, NULL});
CRE_TSK(TIMER_TASK, { TA_HLNG, (VP_INT) 0, timer_task, TIMER_PRIORITY,

STACK_SIZE, NULL });

#ifdef CPUEXC1
DEF_EXC(CPUEXC1, { TA_HLNG, cpuexc_handler});
#endif /* CPUEXC1 */

#include "../../systask/timer.cfg"
#include "../../systask/serial.cfg"
#include "../../systask/logtask.cfg"

60

2006/5/23 TOPPERS Project certified 60

Timer construction using JSP kernel 3
Consideration of instant noodle timer （ENTRY_TASK）

 Initialize hardware (initial_key, initial_led)
 Activate task every 100ms. Waiting status at other

times (WAIT state). Task status shift by tslp_tsk()
 Retrieve timer power switch status (get_key()), if

there is a change, rewrite timer LED status (set_led())
 sw = get_key(START_SW);

Retrieve timer switch status.
Status is either ON or OFF.

/*
* main task
* (switch process)
*/

void
entry_task(VP_INT exinf)
{

UB start_sw, sw;
UB time_led = OFF;

syslog_1(LOG_NOTICE, "Sample entry task starts (exinf = %d).", exinf);
initial_key(); /* initialize key */
initial_led(); /* initialize LED */
start_sw = get_key(START_SW); /* read-in current timer start sw */
act_tsk(TIMER_TASK); /* start timer task */

for(;;){
tslp_tsk(500);
sw = get_key(START_SW);
if(start_sw != sw){

syslog_1(LOG_NOTICE, "Change START_SW = 0x%x.", (int)sw);
if(sw == ON)

time_led = ON;
else

time_led = OFF;
start_sw = sw;

}
set_led(TIMER_LED, time_led); /* timer LED setup */

}
}

61

2006/5/23 TOPPERS Project certified 61

Timer construction using JSP kernel 4
Consideration of instant noodle timer （TIMER_TASK）

 Get current time (get_tim(¤t_time);),
activate timer at 250ms units (tslp_tsk(base_time -
current_time));

 Should the base_time-current_time become a
negative figure, what to do?

 Change power LED state every second
 set_led(POW_LED, pow_led);

pow_led shows the state of the power LED, LED
light on (power ON) and off (power OFF)

/*
* Timer task
*/

void
timer_task(VP_INT exinf)
{

SYSTIM base_time, current_time;
TMO tmout = 0;
UB pow_led = OFF;

syslog_1(LOG_NOTICE, "Sample1 timer task starts (exinf = %d).", exinf);
get_tim(&base_time); /* read current time */
for(;;){

tslp_tsk(tmout); /* TICK wait */

/* turn on LED at odd second */
if ((base_time / T_1SEC) & 0x01) {

pow_led = ON;
} else {

pow_led = OFF;
}
set_led(POW_LED, pow_led);

base_time += T_TICK;
get_tim(¤t_time);
tmout = base_time - current_time;
if(tmout < 0)

tmout = 0;
}

}

62

2006/5/23 TOPPERS Project certified 62

Timer construction using JSP kernel 5
Confirm development tool

 Development will be done in the timer2 directory
 The same programs contained in the timer1

directory exists in the timer2 directory
 Modify the source code for timer2, and actualize

the functions
 After reprogramming, go back and check the

alterations made

63

2006/5/23 TOPPERS Project certified 63

Before modifying
Check sample program content
1. Build sample program contained in the timer1

directory
 Step 1 make depend
 Step 2 make

2. timer1 is a project where two tasks executes; the
LED blinks every second and displays switch
state to LED

3. Using the simple monitor, download jsp.srec
to target and execute

1.timer1.cfg
Create timer1 project configuration file, entry_task and timer_task, interrupt setting for serial
driver, and set timer to be used by TOPPERS/JSP kernel

2. timer1.c
void timer_task(VP_INT exinf);

timer task : power LED blinks every 1 second
Void entry_task(VP_INT exinf);

Initializes key and LED device. There is no need for timer initialization because it is
managed by the TOPPERS/JSP kernel. After initialization, start up at every 100 milliseconds;
if timer start switch is on, then turns the timer display LED on, if switch is off, then turn timer
display LED off

64

2006/5/23 TOPPERS Project certified 64

Appendix

The microcomputer board

65

2006/5/23 TOPPERS Project certified 65

AKI-H8/3069F
Outline and external specification

 RAM16KB, ROM512KB（external RAM16MB）
4 switches, 2 LED can be controlled

Internal memory
RAM :16KB
Flash ROM :512KB

External memory
RAM :16MB

Memory

MCU:H8/3069F
Action mode：expanded mode 5
Clock frequency：main clock
20MHz

MCU

ContentItem

OUTLINE External specification

* Only DIPSW1-1 and DIPSW1-2 will be used in this
seminar

66

2006/5/23 TOPPERS Project certified 66

AKI-H8/3069F
Memory map

 In this seminar the simple monitor will be used

Internal IO register (1)

Flash ROM
512KB

Vector Area

Internal IO register (2)

User Program Area

Internal RAM

Internal interrupt

System reserve

External interrupt
IRQ0～IRQ5

Trap Order

External interrupt NMI

System reserve

000000h

080000h

EE0000h

FFFFE9h

0000FFh

FFBF20h

FFFFE9h
0FFFFFh

Interrupt Vector Table

64Bytes

External RAM

FFFF20h

Reset
1

7

8

12

18

20

63

0

＝area for simple monitor

400000h

600000h

EE0000h

EE0081h

AKI-H8/3069F memory map
Internal memory
RAM :16KB
Flash ROM :512KB

External memory
RAM :16MB

The simple monitor uses the Flash ROM and inner memory RAM

67

2006/5/23 TOPPERS Project certified 67

AKI-H8/3069F Circuit diagram

For the circuit diagram, see the
diagram attached to AKI-H8/3069F

AKI-H8/3069F circuit diagram

68

2006/5/23 TOPPERS Project certified 68

Input/output port & connection
correspondence

LED2 (green)
LED1 (red)
DIPSW1-4
DIPSW1-3
DIPSW1-2
DIPSW1-1

Name

P47

P46

P53

P52

P51

P50

H8 port number

（not in use）
（not in use）

Timer start switch

Timer LED
Power LED

Timer extend switch

Logical name

Since these hardware dependencies are hidden by the device
driver, the application programmer does not need to be
aware of them

A simple manual for the device driver is in toppers-beginner-h8/device/readme.txt

69

2006/5/23 TOPPERS Project certified 69

Mechanism for LED blinking
What type hardware controls it?

 LED is controlled by I/O
port 4

 Port 4 is set for outputting
 LED 1 is connected to port 4,

6 bits and LED 2 is
connected by 7 bits

 Cathode is molded to the
LED. When it is set at 1 “H”
level, an electrical current
runs through and lights up

70

2006/5/23 TOPPERS Project certified 70

Switch sensing mechanism
What type hardware controls it?

 Switch is connected to I/O
port 5

 Port 5 is set for input
 DIPSW1-1 is connected to

port 5, 0 bit, DIPSW1-2 is
connected to port 5, 1 bit

 This switch is grand on
negative logic, and therefore
changes to 0 ”L” level when
turned on

