
1

2006/5/24 TOPPERS Project certified 1

ＴＯＰＰＥＲＳ
Introductory implementation seminar
(JSP-1.4|AKI-H8/3069F | instant noodle timer session)

DAY 2
TOPPERS Project

Educational Working Group

2

2006/5/24 TOPPERS Project certified 2

About this document
 Document Usage Conditions

Copyrights
--

<TOPPERS Introductory implementation seminar (JSP1.4|AKI-H8/3069F|timer session) DAY 2>

Copyright (C) 2004 by Ryosuke Takeuchi Ricoh Company, Ltd., Platform Development Center
Copyright (C) 2004 by Masaki Yamamoto Denso Create Inc.
Copyright (C) 2004 by Industrial Technology Institute, Miyagi Prefectural Government
Copyright (C) 2005 by Monami Software, LP

For usage of this document, when the following requirements (1)～(3) are fulfilled, usage, reproduction, changes, and redistribution
(hereafter called distribution) of this document (including changes made to the document) is granted.

(1) When distributing this document and aforementioned copyright and conditions are included in the material unchanged.
(2) When altering this document, description of the alteration must be included in the material. However, if the alteration is part

of the TOPPERS Project activity, it is not necessary to note the alteration in the material.
(3) The aforementioned authors and TOPPERS Project are to be exempt from any liability, real or imagined, direct or indirect,

that may occur from distribution of the material.
--

For opinions, proposals, and questions concerning this document, send it by e-mail to the TOPPERS Project secretariat.

This document is subject to change, for content improvement and otherwise, without prior notification.

１．

２．

３．

This document uses the Clip Art Gallery by Microsoft.

TRON is the abbreviation of ”The Real-time Operating system Nucleus”. ITRON is the abbreviation of ”Industrial TRON”. μITRON
is the abbreviation of ”Micro Industrial TRON”. TOPPERS/JSP is the abbreviation of Toyohashi Open Platform Real-Time System/
Just Standard Profile Kernel.

All merchandise names and trade names are trademarks and registered trademarks of the companies referred.

3

2006/5/24 TOPPERS Project certified 3

Seminar schedule
 Day 1  Day 2
１．Checking the development tool

0.5 hr

２．What is embedded?
Revising the introductory
SESSAM seminar 1.5 hrs

３．Confirming operation of non-OS
teaching material 1 hr

４．What is Real-Time OS? 1.5 hrs
RTOS conditional transfer,
confirmation by utilizing HW I/F
education material

５．Construction of instant noodle timer

Constructing the timer 1.5 hrs

１．Implementing the instant noodle timer

Implementing the timer 1.5 hrs

２．Review 0.5 hr
Evaluation of construction and
application

３．Synchronization and communication
1 hr

Correspondence between tasks

Synchronizing and exclusive control

４．Reconstruction using eventflags
1.5 hrs

５．Summary 1 hr

4

2006/5/24 TOPPERS Project certified 4

Implementing the timerImplementing the timer

１．Implementing the instant noodle timer
２．Review
３．Synchronization and communication
４．Reconstruction using eventflags
５．Summary

Let us create a RTOS version instant noodle timer.
In this development tool, the use of debugger is not possible so use the system log display function for
debugging.

5

2006/5/24 TOPPERS Project certified 5

Basic knowledge for implementing the JSP
kernel 1
Steps to initializing the system and initialization program

 To start the kernel, minimum initialization to
target is needed before calling kernel_start

 CPU is locked while the execution is conducted
 For each target, the JSP kernel readies a startup

module for execution
 For details, see manual contained in jsp/doc

directory

A target dependent source exists under the config directory.
There is a naming rule for this directory.

<processor name>-<development tool name>
If the <development tool name> is omitted, GNU-GCC development tool name will be used.
The directory below will indicate the <system name>. Commonly, the target board name is used for the
system name.
The directory structure for AKI-H8/3069F environment is as follows:

config/h8/akih8_3069f

Normally, the initializing program at power-ON is an assembler language program called start.S located
under <CPU name>-<development tool name>. At the end of this program, call up for _kernel_start is set.

kernel_start() is described in the C language program startup.c located in the kernel directory. startup.c is
a program which processes initialization and exiting for TOPPERS/JSP kernel.

6

2006/5/24 TOPPERS Project certified 6

Basic knowledge for implementing the
JSP kernel 2
Confirming the configurator

 With RTOS, memory resource used by the
kernel object is obtained statically and/or
dynamically

 TOPPERS/JSP kernel determines memory
resource when compiling and obtains it
statically

 A configurator is a program that automatically
sets up the kernel object statically

There are two ways where the kernel object obtains memory after the power is turned ON; one type is
dynamically and the other is determined at compile/link time. Most RTOS secures memory dynamically.
The TOPPERS full set kernel secures memory dynamically as well. Because there is no need for useless
managerial areas when securing memory statically, the total memory size is smaller. The TOPPERS/JSP
kernel uses a automatic assignment program called a configurator to secure memory statically.

The configurator creates a source file and include file which defines the memory area from the
configuration file (.cfg). [Contents of the instant noodle timer is noted in section 4 of day 2 “Task
communication #2”]

The configurator is executed by the cfg command under the cfg directory. Since this program is not CPU
dependent, it can be used with any CPU. It is called by the cfg command at the beginning of build, so you
can check it in the build log.

7

2006/5/24 TOPPERS Project certified 7

JSP kernel timer implementation 1
Possible to execute at 250ms without main routine

• With the OS-less implementation, two processes
are forcibly executed every 250ms by main()

• Utilizing the service call tslp_tsk, a task can create
a process that executes every 250ms within itself

• Command within the for loop of entry_task and
timer_task is executed every 250ms without being
externally called

With real time operating system, the two processes are executed as tasks. Unlike the non-OS version
where execution is called by the main routine, the two processes are executed on separate processors.
This means that entry_task and timer_task acts as separate main routines.

If the contents of the switch_process program is set into the for loop string of entry_task, and contents of
the timer_process program is set into the for loop string of timer_task, then execution is possible without a
main routine.

8

2006/5/24 TOPPERS Project certified 8

JSP kernel timer implementation 2
Communication between the two tasks

 Communication notifying timer condition from
ENTRY_TASK to TIMER_TASK is necessary

 What kind of information is communicated?
１．Timer start up notification
２．Time extension notification
３．Timer stop notification

 When notified, three condition transition occurs with
TIMER_TASK

timer start-up, timeout, timer exit

Memory area where multiple tasks share data is called shared memory. Communication can be
established by one task writing data to this area and the other task reading in the data from this area.

Create the program so that the data read in by TIMER_TASK recognizes this as an event and relays the
state of the timer.

9

2006/5/24 TOPPERS Project certified 9

JSP kernel timer implementation 3
Using shared memory

 Information is
communicated
through shared
memory

 Here, one side writes
and the other side
enters the
information

ENTER_TASK
Read in key setup

TIMER_TASK
Timer condition change

１．start

２．stop

３．extend
Shared
memory

Request entry

Request take-in

10

2006/5/24 TOPPERS Project certified 10

JSP kernel timer implementation 4
Data communication using shared memory

 Using shared memory (external unsigned char type
variable), three conditions are communicated

 ENTRY_TASK writes the communicated
information and TIMER_TASK reads the
communicated information

11

2006/5/24 TOPPERS Project certified 11

JPS kernel timer implementation 5
Using TOPPERS system log
 Using system log function, logs can be displayed to the

console as was done with timer1.c source
 exinf value will be displayed on log at ENTRY_TASK

startup
syslog_1(LOG_NOTICE, “Sample entry task starts
(exinf=%d).”, exinf)

 Within the log information there is a level of
importance setting. LOG INFO is not set to display at
default. Changing the display level can be done by the
vmsk_log function

Refer to jsp/include/syslog.h for importance level

The log information importance is set by the syslog_n function’s first parameter. Since display is decided by
comparing the aforementioned value and logmask value, it becomes possible to switch between
displaying/concealing unnecessary logs. With TOPPERS/JSP kernel Release1.4, switching can be done by
setting the following function:

ER syslog_setmask(UINT logmask, UINT lowmask);

/* define log information rank (syslog.h) */
#define LOG_EMERG 0 /* shutdown error */
#define LOG_ALERT 1
#define LOG_CRIT 2
#define LOG_ERR 3 /* system error */
#define LOG_WARNING 4 /* warning message */
#define LOG_NOTICE 5
#define LOG_INFO 6
#define LOG_DEBUG 7 /* debugging message */

12

2006/5/24 TOPPERS Project certified 12

ReviewReview

１．Implementing the instant noodle timer
２．Review
３．Synchronization and communication
４．Reconstruction using eventflags
５．Summary

Let us review the finished program.
There are several techniques to a balanced implementation.
First, about module division
・optimal module size

approximately half page (30 lines)
simplify implementation

・clearly defined system
equality system (left-right balanced, top to bottom is logic-physics)
the system can be interpreted by module relation

・minimize repetition
do not set same function to separate modules

・conceal information
conceal data used by module

13

2006/5/24 TOPPERS Project certified 13

Review
Presenting your program
 There is no “correct” program
 Quality of design can be examined

Module division
• optimize size, clarify the system, minimize repetition, and

conceal information

Module cohesion
• higher the cohesion, the better the maintenance

Module coupling
• weaker coupling makes better maintenance

• Module cohesion
Listed in descending order of cohesion level

1. Functional cohesion - module with a singular function, information, and duty
2. Sequential cohesion - parts of a module grouped because the output from one part is

the input to another part
3. Communicational cohesion - parts of a module grouped because they operate on the

same data
4. Procedural cohesion - parts of a module grouped together which follows a certain

sequence of execution
5. Temporal cohesion - parts of a module grouped temporarily together when processing
6. Logical cohesion - parts of a module grouped based on slight relation and is useful

when externally used
7. Coincidental cohesion - parts of a module grouped arbitrarily; the parts have no

significant relationship

• Module coupling
Listed in ascending order of coupling level

1. Data coupling – singular data without structure
2. Data-structured coupling - modules share a composite data structure
3. Bundling coupling - modules structured by multiple fields
4. Control coupling - one module controls the logic of another
5. External coupling - modules share an externally imposed data and/or flags
6. Common coupling - modules share the same global data
7. Content coupling - one module modifies or relies on the internal workings of another

module (assembler)

14

2006/5/24 TOPPERS Project certified 14

Review and test
Points to be noted
 The best order of work for reviewing, debugging, and

testing depends on the development goal, environment,
and developers’ skill

 There are instances where programs are made
specifically for reviewing, debugging, and testing

 Clarify the code by fine tuning the work, using code
organization tools and examine the content by setting
grammar/spell checker and compiler warning level to
maximum prior to reviewing

 Making full use of techniques is a means to achieving
the development goal

There are many expensive static and dynamic program tools on the market.
UNIX command astyle for assembling C, C++, and Java language codes, and UNIX command splint for C
language grammar checker are some of the easy to use tools.

15

2006/5/24 TOPPERS Project certified 15

Synchronization and Synchronization and
communicationcommunication

１．Implementing the instant noodle timer
２．Review
３．Synchronization and communication
４．Reconstruction using eventflags
５．Summary

Let us study about task synchronization and communication supplied by external objects. Basic
synchronization and communication functions are semaphore, eventflag, mailbox, and data queue.

16

2006/5/24 TOPPERS Project certified 16

Concept of synchronization/communication
between tasks
A task is a virtualized processor

 Synchronization/communication between tasks is the
virtualization of synchronization/communication between
processors

 Synchronization/communicate without specifying target task
by utilizing communication/synchronization object

Task A Task B

Synchronization/communication object

Semaphore, event flag, mailbox, data queue

×
Specify
synchronization/c
ommunication
object

Specify
synchronization/c
ommunication
object

17

2006/5/24 TOPPERS Project certified 17

Semaphore 1
Exclusive control provided by operating system
 Etymology

A system utilized on single track railway which gave
information about the state of the line ahead. Only
trains which possessed the ring token could enter
into the single track section

train
train

Ring token ⇔ semaphore
Train ⇔ task

Single track ⇔ competitive resource

Semaphore, by indicating availability and number of unused resources by counter, is an object that
performs exclusive control and/or synchronization when using the resource. When releasing a resource, the
semaphore counter is incremented by 1, and decremented by 1 when acquiring a resource.

Semaphore is composed by the counter and a task waiting to obtain the resource wait queue. When the
resource count becomes 0, because there is no resource available, a task attempting to acquire a resource
is placed in the wait queue until a resource is available.

To avoid the case where too many resources are returned to the semaphore, it is possible to set the
maximum resource count to a semaphore. Initial semaphore resource count can be set as well. When
resources returned exceeds the maximum resource count, an error will be returned.

Semaphore ID is used to identify separate semaphores.

18

2006/5/24 TOPPERS Project certified 18

Semaphore 2
Usage

 Correspond one resource to one semaphore

Task 1
Semaphore acquisition

(waiting)

Return semaphore

Single track section
Within this section, other
tasks will not interfere

This section where protection
from competing tasks is
necessary is called “critical
section”

・necessary sections can be protected efficiently
・conservation of source code is improved

Semaphore service call specification for μITRON4.0 is as follows:
１．Create semaphore
CRE_SEM(ID semid, {ATR sematr, UINT isemcnt, UINT maxsem});
ID semid semaphore ID number
ATR sematr semaphore attribute (TA_FIFO || TA_TPRI)
UINT isemcnt initial semaphore resource count
UNIT maxsem maximum semaphore resource count
２．Release semaphore resource
ER ercd = sig_sem(ID semid); ER ercd = iseg_sem(ID semid);
ID semid semaphore ID number of which resource is released
３．Acquire semaphore resource
ER ercd = wai_sem(ID semid); ER ercd = pol_sem(ID semid);
ER ercd = twai_sem(ID semid, TMO tmout);
ID semid semaphore ID number of which resource is acquired
TMO tmout specified timeout（twai_sem only）

19

2006/5/24 TOPPERS Project certified 19

Eventflag 1
How does it work?
 Notifies occurrence of an event to tasks

Corresponds event and flag

 It is possible to set AND/OR waiting conditions to multiple bit
flags

Task 1 Task 2
Flag set

Flag

Event wait

Waiting on event
occurrence

An eventflag is a synchronization object between tasks where events are represented by individual bit flags.
An eventflag has an associated bit pattern expressing the state of the event and a wait queue for tasks

waiting on the events. Tasks sending events occurrences are able to set and clear specified bits when
necessary. Tasks waiting for events to occur will wait until all specified bit patterns of the eventflag bit is set.
Tasks waiting for eventflags are placed in the eventflag wait queue.

Eventflag functions includes creating and deleting eventflags, setting and clearing eventflags, wait for
eventflags, and referencing the state of eventflags.

20

2006/5/24 TOPPERS Project certified 20

Eventflag 2
Reference state of eventflag
 Notify existence of event by flag bit pattern

Eventflag reset

Set eventflag

Set 01

Flag waiting

Cancel wait

Task 1 Task 2Eventflag

flag=01

flag=00

11 waiting for OR

Waiting state

(waiting on event)

If the flag is 2 bits

Time clr_flg

set_flg

wai_flg

Eventflag function service call specifications for μITRON4.0 is as follows:
１．Create eventflag
CRE_FLG(ID flgid, {ATR flgatr, FLGPTN iflgptn});
ID flgid eventflag ID number
ATR flgatr eventflag attribute ((TA_TFIFO||TA_PRI) |

(TA_WSGL||TA_WMUL)| [TA_CLR])
FLGPRN ifigptn initial value of eventflag bit pattern
２．Set eventflag
ER ercd = set_flg(ID flgid, FLGPTN setptn);
ER ercd = iset_flg(ID flgid, FLGPTN setptn);
３．Clear eventflag
ER ercd = clr_flg(ID flgid, FLGPTN clrptn);
４．Waiting for eventflag
ER ercd = wai_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);
ER ercd = pol_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);
ER ercd = twai_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn, TMO tmout);

21

2006/5/24 TOPPERS Project certified 21

Mailbox 1
How does it work?
 Send and receive messages (synchronize and communicate

simultaneously)

 Data structure of mail
T_MSG
structure

Header space
for the OS
User data space
(OS does not intervene)

Data load
of one
message

Define data structure of mail for
each application use
struct MAIL_tag {

T_MSG header;

int data;

}

Task
1

Task
2

Send
message

Receive
message

Mailbox Waiting state until
message received

A mailbox is an object used for synchronization and communication by sending and receiving messages
placed in shared memory. A mailbox has a message queue to store sent messages and a wait queue for
receiving messages. The task sending a message places the message to be sent in the message queue.
Task receiving the message removes the first message from the message queue. If there is no message in
the message queue, the task will be in the waiting receiving state until a message is sent to the mailbox.
Task waiting to receive a message will be placed in the mailbox wait queue.

Mailbox functions includes creating and deleting mailboxes, send and receive messages, and referencing
state of mailboxes.

22

2006/5/24 TOPPERS Project certified 22

Mailbox 2
Transition of task condition
 By handing over the message, synchronization and

communication is done simultaneously
only the header address of the message is sent

Task 1 Mailbox Task 2
Case where the receiving task is waiting

Waiting state

(waiting for message)

(empty)

Time

Send message
snd_mbx

rcv_mbx

Receive message

Cancel wait

Mailbox function service call specifications for μITRON4.0 is as follows:
１．Create mailbox
CRE_MBX(ID mbxid, {ATR mbxatr, PRI maxpri, VP mprihd});
ID mbxid mailbox ID number
ATR mbxatr mailbox attribute

((TA_TFIFO||TA_TPRI)|(TA_MFIFO||TA_MPRI))
PRI maxpri maximum message priority
VP mprihd start address of area for message queue headers for each message priority
２．Send to mailbox
ER ercd = snd_mbx(ID mbxid, T_MSG *pk_msg);
ID mbxid mailbox ID number to which message is sent
T_MSG * pk_msg start address of message packet to be sent to mailbox

23

2006/5/24 TOPPERS Project certified 23

Mailbox 3
Task transition status

Case where the message is waiting

※ one message

※message is queued
(send task is not queued)

(empty)

(empty)

Send message

Receive message

rcv_mbx

snd_mbx

Task 1 Task 2Mailbox

Time

３．Receive from mailbox
ER ercd = rcv_mbx(ID mbxid, T_MSG **ppk_msg);
ER ercd = prcv_mbx(ID mbxid, T_MSG **ppk_msg);
ER ercd = trcv_mbx(ID mbxid, T_MSG **ppk_msg, TMO tmout);
ID mbxid mailbox ID number from which a message is received
TMO tmout specified timeout (trcv_mbx only）
T_MSG ** ppk_msg holding area of the message received from mailbox

24

2006/5/24 TOPPERS Project certified 24

Data queue 1
How does it work?

 Send and receive 1 word message (data)
Simultaneously performs synchronization and
communication

Task 2Task 1
Send message Receive message

Data queue
• Achieved by ring buffer
• Data is copied

Wait state until message is
received

A data queue is an object used for synchronization and communication by sending and receiving one word
messages. A data queue has a wait queue for sending a data element (send-wait queue), a wait queue for
receiving a data element (receive-wait queue), and a data queue area to store sent data elements.
A task sending a data element places the data into the data queue. If the data queue is full, the task will be
in the sending waiting state until there is room is the data queue area. Task waiting to send the data
element is placed into the data queue’s send-wait queue. A task receiving a data element removes one data
from the data queue. If there is no data in the queue, the task will be in the receiving waiting state until the
next data is sent to the data queue. Task waiting to receive data from the data queue is placed into the data
queue’s receive-wait queue.

Data queue functions includes creating and deleting data queues, send, force send and receive data
elements to/from data queue, and referencing data queue state.

25

2006/5/24 TOPPERS Project certified 25

Data queue 2
Difference between mailbox and data queue
 Mailbox
- Employs link list for data

structure
- Message length is

unrestricted
- Maximum number of

messages is unrestricted
(send task is not halted)

- Needs a header
- Only the head address of the

message is sent and received,
the main body is not copied

- Data element needs to be
preserved until message is
received

 Data queue
- Message length is one word
- Maximum number of

messages is fixed (send task
can be placed in waiting
state)

- No need for header
- Main body of the message is

copied
- No need to preserve data

element until message is
received

Data queue function service call specifications for μITRON4.0 is as follows:
１．Create data queue
CRE_DTQ(ID dtqid, {ATR dtqatr, UINT dtqcnt, VP dtq});
ID dtqid data queue ID number
ATR dtqatr data queue attribute (TA_TFIFO||TA_TPRI)
UINT dtqcnt capacity of data queue area (number of data elements)
VP dtq start address of data queue area
２．Send to data queue
ER ercd = snd_dtq(ID dtqid, VP_INT data);
ER ercd = psnd_dtq(ID dtqid, VP_INT data);
ER ercd = ipsnd_dtq(ID dtqid, VP_INT data);
ER ercd = tsnd_dtq(ID dtqid, VP_INT data, TMO tmout);
ID dtqid data queue ID number of which data element is sent
VP_INT data data element to be sent
TMO tmout specified timeout (tsnd_dtq only)

26

2006/5/24 TOPPERS Project certified 26

Data queue 3
Task status transition
 By handing the message, synchronization and

communication is performed simultaneously
Only an one word message is sent

(empty)

Data queue Task 2Task 1

Time

Waiting state
(waiting for message)

Receive message

Cancel waitSend message
rcv_dtq

snd_dtq

Case where receive task is waiting

３．Forced send to data queue
ER ercd = fsnd_dtq(ID dtqid, VP_INT data);
ER ercd = ifsnd_dtq(ID dtqid, VP_INT data);
ID dtqid data queue ID number of which data element is sent
VP_INT data data element to be sent to data queue
４．Receive from data queue
ER ercd = rcv_dtq(ID dtqid, VP_INT *p_data);
ER ercd = prcv_dtq(ID dtqid, VP_INT *p_data);
ER ercd = trcv_dtq(ID dtqid, VP_INT *p_data, TMO tmout);
ID dtqid data queue ID number from which a data element is received
TMO tmout specified timeout (trcv_dtq)
VP_INT *p_data holding area of data element received

27

2006/5/24 TOPPERS Project certified 27

Data queue 4
Task status transition

Time
Send message

※ one message

(empty)

(empty)

Receive message

※ message is queued

Task 1 Task 2Data queue

Case where a message is waiting

28

2006/5/24 TOPPERS Project certified 28

Data queue 5
Task status transition

(empty) → (full)

(full)

Send message

Receive message
rcv_dtq

snd_dtq

When there is room
available in data queue

message is queued

Waiting state

(waiting for
room in data
queue)

Time

When data queue is full, sending task is placed in send-wait queue

Task 1 Task 2Data queue

Case where the data queue is full and is waiting for room in the
data queue

29

2006/5/24 TOPPERS Project certified 29

μITRON4.0 provided synchronization/communication
functions specification

 Types of communication/synchronization functions

Send task
Receive task
Message

Receive task
Message

Event waiting
task

Resource waiting
task

Queued object

CRE_DTQ, snd_dtq,
psnd_dtq, tsnd_dtq,
fsnd_dtq, rcv_dtq,
prcv_dtq, trcv_dtq

CRE_MBX,
snd_mbx, rcv_mbx,
prcv_mbx, trcv_mbx

CRE_FLG,
set_flg, clr_flg,
wai_flg, pol_flg,
twai_flg

CRE_SEM, sig_sem,
wai_sem, twai_sem,
pol_sem

Service call

largemedium - largesmallsmallOverhead

largelargemediumsmallInformation load

Synchronization/c
ommunication

Synchronization/c
ommunication

Event
notification

Exclusive control/
synchronization

Function

Data queueMailboxEventSemaphore

When constructing a system, if multiple communication and synchronization functions within the system is
used the system will become complex. Therefore unless there is reason to do otherwise, it is recommended
to select communication and synchronization function so that the system construction is simple.

30

2006/5/24 TOPPERS Project certified 30

Reconstruction using Reconstruction using eventflagseventflags

１．Implementing the instant noodle timer
２．Review
３．Synchronization and communication
４．Reconstruction using eventflags
５．Summary

Let us reconstruct the RTOS instant noodle timer so that task communication is done using eventflags. By
using eventflags, module cohesion will be weakened.

31

2006/5/24 TOPPERS Project certified 31

Task communication utilizing eventflags 1
Reconstructing the section using shared memory
 Using flag object, construct

a command notification
structure from
ENTER_TASK TO
TIMER_TASK

 Command is communicated
by the eventflag service call

ENTER_TASK
Read in key setup

TIMER_TASK
Timer state transition

１．Start

２．Stop

３．Extend

Flag object

Flag setup

Flag
notification

How does it differ from when using shared memory?

1. With shared memory, global data is referenced and set by two tasks. Therefore when a change occurs
to the module, area implementation must be considered by the two tasks. Compared to this,
implementation using eventflags manages the data using specific objects, making interface construction
clear. In this example, it may look as if there is no large difference, but in cases where the interface is
more complex, benefits become clear.

2. By using eventflags, because it is supported as a synchronization/communication function, starting the
received task right after an event occurrence is possible. Compared to this, when only shared memory
is used, receiving tasks must poll for event occurrences and therefore overhead eventuates.

32

2006/5/24 TOPPERS Project certified 32

Task communication utilizing eventflags 2
Configuration setup
 Task resource with the

TOPPERS/JSP kernel is
defined by the configuration
file

 Resource is converted to two
sources, kernel_id.h and
kernel_cfg.c, by the
configurator

 CRE_FLG is defined to
timer1m.cfg

timer1m.cfg
timer1.h

timer.cfg

serial.cfg

logtask.cfg

configurator

kernel_id.h kernel_cfg.c

By using an editor, change the configuration file. By executing make depend from the setting within
makefile, the configurator (../../cfg/cfg.exe) will start up and create kernel_id.h and kernel_cfg.c from
timer1m.cfg.

Reference notes from eventflag#2 for CRE_FLG.

For the eventflag ID, set label of your preference. The eventflag attribute is
(TA_TFIFO|TA_WSGL). Initial value of the eventflag bit pattern is 0. TA_TFIFO is the setting for
FIFO order and TA_WSGL means that only a single task is allowed to be in the waiting state for
an eventflag.

33

2006/5/24 TOPPERS Project certified 33

Task communication utilizing eventflag 3
Send task implementation

 When sending an
event, send by using
the set_flg service
call

 Three events can be
used as is

EVT_TIMER_START

EVT_TIMER_STOP

EVT_TIMER_COUNT

Start timer

Stop timer

Extend timer time

event |= EVT_TIMER_START;

set_flg(eventflag ID, EVT_TIMER_START);

First it is necessary to define the bit patterns for communication.
Here we will use the same definition that was used for defining shared memory event.
Also the eventflag ID specified in the configuration file will be automatically converted by the configurator as

set within kernel_id.h, therefore that label can be used as the eventflag ID.
When sending the event, use the set_flg service flag to send the event.

ER set_flg (ID flgid, FLGPTN setprn);
ID flgid ID number of the eventflag to be set
FLGPTN setptn bit pattern to set

In this case, there will be no error occurrence so there is no need for an error check.

34

2006/5/24 TOPPERS Project certified 34

Task communication utilizing eventflag 4
Receive task implementation
 Wait for eventflag with

timeout or wait for eventflag
by polling is utilized

 When the service call
outcome is E_OK, bit
pattern of flgptn is turned
ON

 Flag can be cleared by
clr_flg after inheriting the
flag

#define EV_TIME (start|stop|extend)

/* description within timer task*/

FLGPTN flgptn; /* flag pattern */

TMO tmout; /* timeout（ｍｓ）*/

ER ercd; /* service call result */

:

tmout = timeout；

ercd =
twai_flg(EVT_FLGID,EV_TIME,TWF_ORW,&flgptn,tm
out);

If(ercd == E_OK){

clr_flg(EVT_FLGID, ~flgptn);

:

}

EV_TIME is the OR value of the three wait bits.

twai_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *flgptn, TMO tmout);
ID flgid ID number of the eventflag to wait for
FLGPTN waiptn wait bit pattern
MODE wfmode wait mode
FLGPTN flgptn receive pattern holding area
TMO tmout specified timeout (ms)
When wait mode has TWF_ANDW set, the release condition requires all the bits in the wait
pattern to be set. With TWF_ORW, the release condition only requires at least one bit in the wait
pattern to be set.
Acquiring a flag using the eventflag wait service call does not clear the flag that has been set.
Therefore the clr_flg service call is needed for clearing. With timeout settings, the tmout value
changes depending on the wait condition value set.
TMO_POL(=0) same as pol_flg; specifies polling setting
TMO_FEVR(=-1) same as wai_flg; endless timeout duration
tmout value is milliseconds.

35

2006/5/24 TOPPERS Project certified 35

SummarySummary

１．Implementing the instant noodle timer
２．Review
３．Synchronization and communication
４．Reconstruction using eventflags
５．Summary

Let us summarize. Purchase the board and try working the exercises.

36

2006/5/24 TOPPERS Project certified 36

Task communication/synchronization design 1
Communication via shared memory
 Place data to be shared between tasks in shared

memory
 Exclusive control is needed (excluded if

the shared data can be read/written at once)

 A separate mechanism may be necessary to notify the
occurrence of an event

・task start/wakeup

・disable interrupt/dispatch

・change task priority
・utilize semaphore/mutex

・utilize eventflag/condition variable

Here is some explanation on how to construct task communication functions of system designs.
Communication methods are largely divided into “communication by shared memory” and “communication
by message”.

With communication by shared memory, data to be sent/received between tasks is secured in global
memory areas and/or shared memory. By read/write of data placed in these areas, communication is made
between tasks. Since each task and interruptions are asynchronous actions, if a task reads in data before
the other task has written in the data, erroneous information may be received. Therefore by using, for
example semaphores for external controls, it is possible to prevent these situations.

Also, if there is a change in the event occurrence or a need arise where action is immediately necessary, it
is necessary to run the receiving task using task start/wake-up and/or eventflags.

37

2006/5/24 TOPPERS Project certified 37

Task communication/synchronization design 2
Communicating by message
 Realization of task communication through message
 Structure is needed for message communication
 Types of message communication structures:

・synchronous message communication or asynchronous
message communication
・handover pointer or copy pointer
・sequence of queuing (FIFO, priority)
・action when there is no message and when message is full

・packet unit exists or does not exist

Good understanding of the RTOS message communication structure
(may be multiple structures) is necessary

For “communication by message”, construction is done by utilizing message functions such as mailboxes
and data queues. The message content needs to be examined carefully when setting the system. Message
structure can be self made if external control is managed. Consider the whole system and construct in the
best possible method.

38

2006/5/24 TOPPERS Project certified 38

Task communication/synchronization design 3
Shared memory vs. Message communication
 Basically, if it can be accomplished using one method, then it

is possible to be done in the other as well (task wait
condition must be taken into consideration)

 Depending on the circumstance, one method may be
advantageous/convenient compared to the other

・In general, the shared memory method has a smaller overhead
・Message method is easier to handle for system verification.

[e.g. easier to separate problems]

・Shared memory is advantageous when the flow of information is 1:n and
timing of when the information is needed is ambiguous

・Message method is convenient when queuing of information is necessary

System designing becomes complex when both methods are
utilized, and careful deliberation is prudent

39

2006/5/24 TOPPERS Project certified 39

APPENDIX

40

2006/5/24 TOPPERS Project certified 40

Characteristics of TOPPERS/JSP kernel
μITRON4.0 conformed standard profile

 Source code is easy to read and reconstruct
 Easy porting to targets structure
 High efficiency performance and low RAM

usage
 Linux / Windows simulation tool
 Possible to construct using only free software,

including development tool

The TOPPERS/JSP kernel is a real-time kernel that is in accordance with μITRON4.0
specification. It is also the first development result by the TOPPERS project. JSP is an acronym
for Just Standard Profile, and as the name shows, is implemented in accordance with the
μITRON4.0 specification standard profile rule. The latest JSP release can be downloaded from
http://www.toppers.jp/index.html.

Main features are as follows:
•Easy to read and reconstructible source code
Keeping in mind that utilization would be for research and development, emphasis was put on
easy to read and reconstructible source codes. The algorithm, although easy to read, is not
inefficient. Rather for example, by using heap structure to manage time events, complex but
efficient algorithms are employed.
•Porting to other targets is easy to do
C language is used for most parts of the kernel. Clear separation of target independent and
dependent parts are made, therefore making porting to other target processors and systems is
made easy. There are reports where, if the target processor architecture is familiar, that porting
was accomplished in three days.
•High efficiency performance and low RAM usage
For a kernel where most parts are written in C, high efficiency performance and low RAM usage is
realized.
•Simulation environment on Linux and Windows
Simulation environments for JSP kernel to run on Linux and Windows are available. These
simulation environments switches multiple tasks within one process in Linux/Windows. It is the
best suited for proto-type development of embedded systems, logic level verifications, and real-
time learning experiences.
•It is possible to construct systems solely using free software
GCC and GNU development tool are standard software development tools. Therefore the user
can acquire not only the kernel itself, but also the development tool free and develop a system.

41

2006/5/24 TOPPERS Project certified 41

Simulation without hardware
Development employing Windows simulator
 Enable to implement, simulate, and test on Windows
 Same source code can be used as if executing on real hardware
 Source code in C++ is made available

COM I/F

Inter-process Communication Manager (Message dispatcher)

R
e

a
d
/
W

ri
te

R
e
a
d
/
W

ri
te

In
te

rr
u

p
t

COM

Hardware Model
 (C/C++)

In
te

rr
u
p
t

R
e
a
d
/
W

ri
te

Communication I/F

User application

mITRON Kernel
(Hardware Independent)

Kernel HAL
(Windows)

Hardware Model (VB)

Act iveX Control

K
e
rn

e
l

lo
g

HW Access I/F

Kernel log

R
e
a
d
/
W

ri
te

Application Process

COM I/F

In
te

rr
u
p
t

R
e
a
d
/
W

ri
te

Hardware Model (RTL)

Windows simulator supplements the TOPPERS/JSP kernel Release1.4 Windows version kernel, and
provides the interface to the device and system log.

These parts which compose the interface are called device drivers, and exist on Windows through the COM
interface. With the interface between device driver and Visual BASIC, the device control program controls the
interface with the device and the log watcher control program maintains the system log. Installation directions
for these programs are noted in the TOPPERS/JSP kernel Release1.4 doc/windows.txt.

42

2006/5/24 TOPPERS Project certified 42

Standard JSP kernel development tool 1
LINUX and Cygwin
 CPU corresponding to TOPPERS/JSP kernel and development board

dependent source is located in the config directory
 The above mentioned are stored accordingly to the following naming rule:

 GNU development tool
tool name is abbreviated

h8/akih8_3069f [GNU environment]

 Other development tool besides GNU
tool name is noted after the CPU
CPU name - tool name / board name

m16c-renesas/oaks16_mini [Renesas Technology Corp environment]

GNU development tool can be developed on Linux
and/or Cygwin

The basic TOPPERS/JSP kernel development tool is one where GNU is utilized.
There is a naming rule to the CPU and board correspondences under the config directory. If the tools

name is omitted, it specifies that they should be constructed under the GNU environment.
In order to use the GNU compiler and linker, an UNIX executable environment such as LINUX is necessary.

With Windows, an UNIX executable environment such as Cygwin is necessary.
In these cases, Perl and Gnu-make is used for construction. Therefore it will be wise for the development

manager to hold knowledge of these languages.

43

2006/5/24 TOPPERS Project certified 43

Standard JSP kernel development tool 2
Developing on Cygwin

 Install Cygwin onto Windows
 Install the target GNU development tool onto Cygwin

 Build the configuration tool(s)
 Using configuration script, create Makefile for target

and sample programs
 After defining dependency relations, build the target

Install BINUTILS, GCC, GDB, NEWLIB

44

2006/5/24 TOPPERS Project certified 44

Development tool defined
Constructing the development tool

 Development tools can be constructed on your
computer as well
In the CD-ROM attached to the board, a GNU

development tool (Cygwin, BINUTILS, GCC, NEWLIB)
is contained. Follow the installation instructions to install
onto your computer

 There is a sample source on the CD-R
Sample source for this seminar is contained on the CD-R.
Construction of environment needed for this seminar can
be made from this.

