TOPPERS 活用アイデア・アプリケーション開発 コンテスト

部門	:	アプリケーション開発部門
作品のタイトル	:	TOPPERS ASP を使用した Azure IoT アプリ
作成者	:	手塚湧太郎
共同作業者	:	本田晋也,長島宏明
対象者	:	TOPPERS OS を用いて Azure IoT アプリ開発をお考えの方
使用する開発成果物	:	TOPPERS ASP カーネル

目的・狙い

組込みシステムにおいて, IoT 技術が注目されている. IoT を活用するプラットフォ ームの1つとして「Azure IoT」が注目されており, Azure IoT 活用したアプリケー ション開発を通し, TOPPERS OS を用いた IoT アプリケーション開発のさらなる可 能性を示すことを狙いとしている.

アイデア/アプリケーションの概要

本アプリケーションは、Wio Terminal を用いて、ZUMO による走行制御を行うと ともに、その走行データの一部を Azure IoT 上に蓄積するアプリである.走行モー ドやデータ送信モードの管理を TOPPERS ASP によって実行している. TOPPERS OS による Azure IoT アプリケーション開発手法について示すことができた.

アプリケーションの概要

- 方眼上のコースをコマンドに従い走行し、 データをAzureに送信するロボット
 - リアルタイムOS
 - TOPPERS ASP3

- メインタスク

- 各setup
- ・ 走行コマンドの受け取り
- 走行モードと送信モードを管理
- 機能1(走行モード)
 - Zumoの走行を管理
 - ・コマンドを受け取り、ライン上を走行する

- 機能2(送信モード)

- Azure IoT Hubを利用しZumoセンサーデータをクラウドへ送信
- ジャイロセンサーのデータを送信する

- 以下のサイトを参考にAzure環境を用意した - <u>https://matsujirushi.hatenablog.jp/entry/2020/0</u> <u>8/10/222132</u>
- Azureサブスクリプション
- Azure Portalから以下を作成
 - Azure IoT
 - Azure IoT Hub
- Azure IoT Explorer
 –メッセージ確認用に使用

Parallel & Distributed Systems Lab.

動作環境

- Arduino Arduino IDE - 組込みシステムのプログラミング環境とボードコンピュータ - C++に近い言語でプログラミング
- Wio terminal
 - Arduino互換のマイクロコントローラ
 - 5方向スイッチ
 - WiFi接続
- ZUMO
 - 各種センサーを搭載した 移動ロボット
 - LED
 - 加速度センサ
 - ・ ジャイロセンサ
 - ・ 電子コンパス
 - Arduinoにより制御
 - プログラムにより
 - モータの制御
 - センサの読み込み

Wio terminal

ZUMO

アプリケーション構築

- 構築のためダウンロードしたもの
 - Wio TerminalのAzure IoT 接続サンプル
 - https://github.com/Azure/azure-iot-arduino
 - Wio TerminalのTOPPERS/ASP3サンプル
 - https://github.com/exshonda/Arduino_TOPPERS_ASP
 - Wio TerminalのZUMO管理ライブラリ
- ・ アプリケーション開発
 - TOPPER ASP3サンプルに作成したrun_zumo関数と
 Azureサンプルのrun_demo関数をタスクとして登録
 - run_zumo: ZUMOによる走行を実行する関数
 - run_demo : Azure IoTにメッセージを送信する関数
 - メモリ不足やタスクIDの割り当て方、タスクルーチン開始のタイミングなどに 注意した

アプリケーション構成

アプリケーション実行の流れ

繰り返す

– 今回使用したサンプルではWiFiコネクションの確立はArduinoFreeOS を使用する必要があるため、確立してからASP3によるタスクルーチ ンを開始するようにした

動作手順

- Aruino IDEにライブラリを追加
 ライブラリの管理で、下記を検索してインストール
 - Seeed_Arduino_rpcWiFi(Ver.1.0.4)
 - Seeed_Arduino_rpcUnified(Ver.2.1.3)
 - Seeed_Arduino_FS(Ver.2.0.3)
 - Seeed_Arduino_SFUD(Ver.2.0.1)
 - Seeed_Arduino_mbedtls(Ver.3.0.1)
 - AzureIoTHub (Ver.1.6.0)
 - AzureIoTUtility(Ver.1.6.1)
 - AzureIoTProtocol_MQTT(Ver.1.6.0)
 - AzureIoTProtocol_HTTP (Ver.1.6.0)
 - zip形式のライブラリをインクルードからインストール
 - TOPPERS_ASP
 - TOPPERS_ASP_FreeRTOS_API
 - ZumoShieldN
 - library.zipに添付

- ビルドオプションの変更
 - platform.txtを書き換える
 - 従来のアプリの場合は以下にある
 - C:¥Users¥<yourusername>¥AppData¥Local ¥Arduino15¥packages
 - compiler.cpp.extra_flags=に以下のオプション指定
 - -DONT_USE_UPLOADTOBLOB

- WiFiの設定
 - ファイルを開くからTOPPERS_ASP_and_Azure.inoを開く
 - タブをiot_config.hに切り換え
 - 下記の部分を使用する環境に合わせて、変更
 - DEVICE_CONNECTION_STRINGをAzure IoTから取得した接続文字
 列に変更

```
10 #define IOT CONFIG WIFI SSID
                                           "yourSSID"
11 #define IOT_CONFIG_WIFI_PASSWORD
                                           "yourPASS"
12
13 /**
   * IoT Hub Device Connection String setup
14
   * Find your Device Connection String by going to your Azure portal, creatin
15
   * navigating to IoT Devices tab on the left, and creating (or selecting an
16
17
   * Then click on the named Device ID, and you will have able to copy the Pri
18 */
19 #define DEVICE CONNECTION STRING
                                       "your-iothub-DEVICE-connection-string"
```

• マイコンボードに書き込みで実行開始

Parallel & Distributed Systems Lab.

Azure IoT Explorerでのメッセージ ・ 走行の様子

Tue Jun 22 2021 18:36:37 GMT+0900 (日本標準時):

Tue Jun 22 2021 18:36:27 GMT+0900 (日本標準時):

Tue Jun 22 2021 18:36:14 GMT+0900 (日本標準時):

Tue Jun 22 2021 18:36:02 GMT+0900 (日本標準時):

Tue Jun 22 2021 18:35:52 GMT+0900 (日本標準時):

Tue Jun 22 2021 18:35:40 GMT+0900 (日本標準時):

Tue Jun 22 2021 18:35:28 GMT+0900 (日本標準時):

″body": -96, ″enqueuedTime″: ″Tue Jun 22 2021 18:35:28 GMT+0900 (日本標準時)″

Tue Jun 22 2021 18:35:16 GMT+0900 (日本標準時):

″body″: 0, ″enqueuedTime″: ″Tue Jun 22 2021 18:35:16 GMT+0900 (日本標準時)″ - <u>https://www.dropbox.com/s/fdya3</u> <u>kb4g2ioota/iOS%20%E3%81%AE%E7</u> <u>%94%BB%E5%83%8F.MOV?dI=0</u>

センサー 値	入力 コマンド
0	F
-86	R
-3	L
92	L
88	F
0	R
-87	R
-93	F

Parallel & Distributed Systems Lab.

